

1

Vol. 34, No. 01, pp. 01-12/Marzo 2021

ISSN-E 1995-9516

Universidad Nacional de Ingeniería

COPYRIGHT © (UNI). TODOS LOS DERECHOS RESERVADOS

http://revistas.uni.edu.ni/index.php/Nexo

 https://doi.org/10.5377/nexo.v34i01.11278

Parallel decomposition of control algorithms for computational processes

based on the use of nondeterministic automaton logic

Descomposición paralela de algoritmos de control para procesos

computacionales basados en el uso de lógica autómata no determinista

Dmitry V. Pashchenko1*, Alexey I. Martyshkin2, Dmitry A. Trokoz1, Tatyana Yu. Pashchenko3,

Mikhail Yu. Babich4, Mikhail M. Butaev4

1 Penza State Technological University, 440039, Russia, Penza, 1/11 Baydukova lane/Gagarina st., 1/11

2 Department of Computational Automatons and Systems, Penza State Technological University, 440039,

Russia, Penza, 1/11 Baydukova lane/Gagarina st., 1/11
3 Penza State University, 440026, Russia, Penza, Krasnaya Street, 40

4 JSC Research and Production Enterprise “Rubin”, 440000, Russia, Penza, Baydukova st, 2
*dmitry.pashcenko@gmail.com

(recibido/received: 25-October-2020; aceptado/accepted: 01-December-2020)

ABSTRACT

The paper deals with the issues of decomposition of control algorithms for the processes in parallel

computing systems and the use of automaton models. When designing parallel processing systems, an

important task is the formal presentation of process control algorithms since they allow achieving a

packaged solution to the problems of specification, development, implementation, verification, and analysis

of complex control systems, including the control of interacting processes and resources in parallel

computing systems. It is especially necessary to use formal methods to verify complex information

processing systems by model testing. One of the methods for the formal description of control algorithms

is based on the use for these purposes of the nondeterministic automaton (NDA) logic, which is a method

that allows one to present control algorithms for information processing in the form of systems of canonical

equations describing all particular events implemented in the algorithm. The advantage of such a language

is that all transitions in the control system are described not in terms of system states, but in terms of

particular events, the simultaneous existence of which determines all states and transitions in the system;

this allows avoiding a "combinatorial explosion" in the state space to the possibilities of means verification.

Purpose of the paper: research of control algorithms for parallel computing systems using the NDA

apparatus. The development and research object is parallel decomposition of control algorithms for parallel

computing systems using automatic models.

Keywords: control algorithm, verification, finite automaton, simulation, parallel system, formalization.

https://doi.org/10.5377/nexo.v34i01.11278
mailto:dmitry.pashcenko@gmail.com

2

RESUMEN

El trabajo aborda los problemas de descomposición de algoritmos de control para los procesos en sistemas

de computación paralelos y el uso de modelos de autómatas. A la hora de diseñar sistemas de procesamiento

paralelo, una tarea importante es la presentación formal de los algoritmos de control de procesos, ya que

permiten lograr una solución empaquetada a los problemas de especificación, desarrollo, implementación,

verificación y análisis de sistemas de control complejos, incluyendo el control de los procesos que

interactúan y recursos en sistemas informáticos paralelos. Es especialmente necesario utilizar métodos

formales para verificar sistemas de procesamiento de información complejos mediante pruebas de modelos.

Uno de los métodos para la descripción formal de los algoritmos de control se basa en el uso para estos fines

de la lógica del autómata no determinista (NDA), que es un método que permite presentar algoritmos de

control para el procesamiento de la información en forma de sistemas de ecuaciones canónicas. describiendo

todos los eventos particulares implementados en el algoritmo. La ventaja de tal lenguaje es que todas las

transiciones en el sistema de control se describen no en términos de estados del sistema, sino en términos

de eventos particulares, cuya existencia simultánea determina todos los estados y transiciones en el sistema;

esto permite evitar una "explosión combinatoria" en el espacio de estados a las posibilidades de verificación

de medios. Objeto del trabajo: investigación de algoritmos de control para los procesos de sistemas

informáticos paralelos utilizando el aparato NDA. El objeto de investigación y desarrollo es el proceso de

descomposición en paralelo de algoritmos de control para sistemas de cómputo en paralelo utilizando

modelos automáticos.

Palabras clave: algoritmo de control, verificación, autómata finito, simulación, sistema paralelo,

formalización.

1. INTRODUCTION

To increase control systems' performance for various processes and objects, including information

processing control, various methods of parallelization of control algorithms at different stages of

information processing are used. To effectively solve the problems of parallelizing algorithms, they use

various formal methods for representing control algorithms. One of the promising formal languages for the

specification of control algorithms is the nondeterministic automaton (NDA) language presented in the form

of a canonical equation system (CES) (Hoare, 1989) describing all particular events implemented in the

control system. Depending on the algorithm's detail for controlling the computational process, the events

described by the CES could be understood as the execution of certain acts of information processing, which

may include: the execution of micro-operations and macro-operations functional operators and subroutines,

etc (Baumgertner, 2012).

2. MATERIALS AND METHODS

In the works of well-known domestic and foreign scientists (Gorbatov et al.,1991; Vashkevich & Filatov,

1994; Vashkevich & Vashkevich, 1993; Hopcroft & Ullman, 1979; Hopcroft et al., 2002), (Martin, 2010;

Allan et al., 2005; Saglam, Bilge & Mooney III, 2001; Baumgertner & Melnikov, 2012; Baumgertner,

2012) and (Salomaa, 1986; Melnikov, 2010; Melnikov & Vakhitova, 1998; Melnikov, 2010), great

advantages of the automaton representation for logic control algorithms are noted, which include great

convenience, compactness and simplicity of the formal representation for the CAs (control algorithms) in

comparison with their representation based on the Petri net language. However, the authors attribute this

advantage of the automaton CA representation only for representing sequence systems, taking into account

the use of models of only deterministic automata (DA). For parallel action systems, the authors give

preference to Petri nets, not taking into account the main advantage of the nondeterministic automaton

(NDA) models, which is defined in the parallelism intrinsic for them (Vashkevich & Biktashev, 2016;

Pashchenko et al., 2016; Pashchenko et al., 2015).

3

The formal language of CA representation based on the NDA logic can also be considered as a version of

the basic language, which includes two components: a graphical form for the visual representation of

algorithms in the form of graph-schemes with parallel branches (GSPB) and an analytical one in the form

of a system of recurrent canonical equations (CES) describing all particular events implemented in the

algorithm (Vashkevich & Biktashev, 2016; Vashkevich, 1973).

To increase control systems' performance for various processes and objects, including information

processing control, various methods of parallelization of control algorithms at different stages of

information processing are used. They use various formal methods for representing the CA for effectively

solving the problems of parallelizing algorithms and quantitative assessing their complexity. One of the

most promising formal languages for the specification of control algorithms is the NDA language presented

in the form of a canonical equations system (CES) (Vashkevich, 1994).

When parallelizing the CA, we will take into account the dependence of events both in terms of information

and control and in terms of data being shared variables or shared resources. The CA parallelization result

should be the splitting of all particular events included in the original CES into groups of incompatible

events when in each group, the events can only be executed sequentially (Pashchenko et al., 2020).

Parallelization of an original CA is based on the use of the results of the CES determination, which is the

original algorithm. The CES determining process is performed, in turn, based on the use of a direct transition

table (DTT) of the NDA for all particular events implemented in the CA (Pashchenko et al., 2020;

Martyshkin et al., 2020; Nikolaevich et al., 2020; Pashchenko et al., 2019; Pashchenko et al., 2019). Before

starting the NDA DTT construction, all possible pairs of particular events are found in the original CA,

which will correspond to the following four values:

, , ,
,з ,ci j j jS S S S 

  

Where
jS is the event being formalized,

iS - an event immediately preceding the event
jS ;

,зjS - an event symbolizing the logical conditions (LC) for the origin of the event
jS (the condition of

its initial appearance);

,cjS - an event symbolizing the LC of saving the event

jS after its initial appearance; this event

determines the duration of the event
jS .

In the simplest case, events
,зjS and

,cjS can be represented as particular input signals
,i jx that

determine the transition from the event
iS to the event

jS . In the case if that
,cjS  0, then the signal

,i jx will take on the designation
,j jx , which means the transition from the event

jS to the event
jS

again.

Among all the pairs of events presented in the CA, the events are first found that do not have information

and control connections between themselves but have a common immediately preceding event, from which,

in fact, parallelization of the algorithm begins.

The NDA direct transfer table (DTT) will have the following structure (Table 1)

4

Table 1. The structure of an NDA direct transition table representing the original CA

Algorithm step The initial particular event at

time t  tiS

Logic transition conditions (Particular input

signal)  ,
t

i jx

Transition event

 1t
jS 

1 2 3 4

The DTT should be constructed in such a way that unattainable events of the original algorithm can be

identified. For this purpose, the construction of the DTT begins with marking the initial event in column 2,

and for all subsequent steps of the algorithm, column 2 is marked only by the event that took place in the

previous steps of the algorithm and was marked in column 4. Taking into account the introduced

designations of events and the CES for the CA, the corresponding NDA DTT can be represented in the

general case by the following system of quantifier-free recursive canonical equations for all events realized

in the CA and by the corresponding Moore’s NDA model:

         1
,з ,з

,
V VjY t t t t t

j i j j j
i j j

S S S S S   , (1)

Where  0, , 0 1
0

j n S  ;
jY is a combination of particular output signals to mark the event

jS .

The determination algorithm is considered in detail in (Vashkevich & Biktashev, 2016; Pashchenko et al.,

2020; Vashkevich, 2002) and is based on the search for events, the simultaneous existence of which in the

original algorithm is possible. This means that there are values of logical variables for which several events

are executed simultaneously with one implementation of the algorithm, i.e., such events are compatible. The

determination algorithm execution result is a deterministic DTT, which is constructed in steps, starting with

a combination of initial events, and has the following form (Table 2). For all subsequent steps in the

construction of the transition table, filling in column 2 is carried out according to the same principle as for

the DTT NDA. Based on the determination results, we get all possible combinations of particular events

(Table 2, column 4) that can be performed simultaneously, i.e., they are compatible events.

Table 2. Direct transition table of a deterministic automaton representing the original CA

Algorithm step Population of initial particular events Combination of particular input

signals at the transition

A set of particular events at the

transition

Complete event  tma

Complete input signal

  ,x t
m sa a

Complete event  1t
sa 

1 2 3 4

Using the results of determinisation, it is possible to construct an auxiliary compatibility matrix (Figure 1)

of all particular events of the original CA.

S1
…

βS …

S n

S1
0 …

β1, …

1,n

… … … … … …

αS ,1α …

β,α …

,α n

… … … … … …

S n ,1n …

β,n … 0

Figure 1. Matrix of compatibility of particular events, taking into account their relationship in management and

information

5

The cells of the presented compatibility matrix are filled on the basis of the following:
β,α = 0, if

αS

and
βS are not compatible, and

β,α = 1, if
αS and

βS are compatible, i.e., jointly enter a complete

event. It should be noted that when constructing the compatibility matrix based on the results of the

determination algorithm, only the connections of events by control and information were taken into account,

without taking into account the relationship of events by data. The connection by data will be taken into

account when adjusting the event splitting into groups of incompatible events.

An event connection by information indicates that the output information obtained from the execution of

the event
iS is input information for the execution of the event jS

, since the event
iS is the event

immediately preceding the event
jS . Thus, such a relationship indicates that such events cannot under any

circumstances be executed simultaneously.

The connection of events by control takes place in the case that based on the results of the execution of the

event
iS , a LC  ,i jX

 are generated, which determines the transition to one of the events. Thus, the

connection by control, which determines the sequence of events, is at the same time a connection by

information.

The algorithm for constructing the inclusion matrix is based on the requirements for the satisfaction of the

following conditions:

а) ; ; , 1, , ,i j i j H H Pm mi j    

b) 1 2 ,H nm m m 

Where im and jm are groups of incompatible events,

H is the number of groups of incompatible events,

n is the number of all particular events,

P is the maximum number of particular events included incomplete events.

Condition (a) means that each event can be included in only one single group of incompatible events.

Condition (b) means that each event must be included in one of the groups of incompatible events. The last

option will correspond to the serial port of the CA, which the main processor can carry out, and the first

option will correspond to such a way of implementing the CA when the functions of the main processor will

be assigned to the working processors, each of which implements one of the parallel branches of the CA.

The main processor performs tasks that would be associated with the synchronization of working processors,

including when there is a connection of particular events by the data due to contention. Usually, particular

events that are incompatible with any of the original algorithm's events include events of two consecutive

branches of a common CA.

The first initial sequential part of the CA serves to perform preparatory functions. In turn, the second part

of the sequential composition of the CA is needed to perform functions related to the processing of

information obtained as a result of executing parallel branches of the algorithm.

2.1. Taking into account the connection of events by data when parallelizing CA

 Let us now consider the issues on correcting subsets' composition containing incompatible particular

events, taking into account their dependence on the data. The need for such a correction arises in the case,

when in the course of constructing a matrix for the inclusion of particular events determining the division

of the entire set of events of the original CA into subsets of incompatible events, a situation may arise when

6

individual pairs of data-dependent events will be located in different subsets. This circumstance can cause

critical deadlocks in implementing the information processing algorithm since such events require a shared

resource.

There are two possible solutions to the problem of correcting the composition of subsets of incompatible

particular events, which will not lead to deadlocks. For the first option, the solution to such a problem is

considered without considering the correction of the original CA, and the second is based on the correction

of the original CA by its equivalent transformations. We can use an auxiliary matrix of the dependence of

particular events on the data; this matrix has the form (Figure 2).

 S1

βS S n

S1
0 …

1,βD … D n,1

…

αS α,1D …
,βD

 …
α,nD

…

S n Dn 1, …
,βnD … 0

Figure 2. Matrix of dependence of particular events on data

The matrix cells describing the dependence of particular events on data are filled based on the following:

if a common resource is required to execute events
αS and

βS , i.e. they have data dependencies, so to

avoid data contention, they must only be executed sequentially. 0, D  if there is no data connection

for events
αS and

βS , i.e. they can run at the same time.

Identification of particular events in different groups mi that have a connection by data is carried out by

sequentially performing operations of intersecting the row
αS of the data compatibility matrix (Figure 2)

with the inclusion matrix row, starting with i = 1.

If
α βim S S , this means that the subset mi contains some event

βS that has a data connection

with the event
αS . In this case, the event

βS can belong either to a subset mi or to some other subset

m j . In this case, the following options are possible:

a) If
α βmi S S , and

β αmiS S , then
αS and

βS also belong to the same subset mi and

there will be no contention between them by the data, accordingly.

b) If
α βmi S S , then

β αmiS S and
β αm jS S , then

αS and
βS both belong to

different subsets mi and m j
, accordingly; they should be placed in one subset of incompatible

particular events to exclude data competition, if possible.

In the event that a connection by data was found for the events presented in different groups, then the

composition of the particular events of these groups should be adjusted. Let us illustrate the technique of

such a correction with an example.

Example. Let the following variants of the inclusion matrix (Figure 3) are obtained based on the results of

CA determination, for which the event
S 2 can be placed in the subset 1m or 2m , and the event

S5 can

7

be placed in the subset 2m or 3m . Thus, Figure 3 shows four possible options for placing particular events

in 3 subsets 1m , 2m and 3m .

Figure 3. Options for the inclusion matrix

Let the matrix of event dependence on data for all particular events have the form shown in Figure 4.

 S1 S 2 S3 S 4 S5 S 6 S 7

S1
0 0 0 0 0 0 0

S 2
0 0 1 0 1 0 0

S3
0 1 0 0 0 0 0

S 4
0 0 0 0 0 0 0

S5
0 1 0 0 0 0 0

S 6
0 0 0 0 0 0 0

S 7
0 0 0 0 0 0 0

Figure 4. The example of a matrix of particular event dependence on data

Using the possible options for the inclusion matrix, we sequentially execute the operations of the intersection

between the row
αS of the compatibility matrix for particular events according to the data (Figure 4) and

the rows of the inclusion matrix (Figure 3); as a result, we obtain the following options of such intersections,

which are not equal to :

8

Option (а)

,

,

,

,

12 3

13 2

15 2

22 5

m

m

m

m

S S

S S

S S

S S









Option (b)

,12 3

,23 2

,25 2

,32 5

m

m

m

m

S S

S S

S S

S S









Option (c)

,12 3

,13 2

,15 2

,32 5

m

m

m

m

S S

S S

S S

S S









Option (d)

,12 3

,23 2

,22 5

.25 2

m

m

m

m

S S

S S

S S

S S









Based on the obtained variants of intersections between the row
αS of the compatibility matrix of

particular events by data and the rows of the inclusion matrix, the following conclusions can be drawn:

For option (a): data-dependent events S 2 and S3 belong to the same subset 1m without causing a

critical deadlock; events S 2 and S5 , depending on data, belong to different subsets 1m and 2m , i.e.,

they can cause a critical deadlock.

For option (b): events S 2 and S3 depending on the data belong to different subsets 1m and 2m , i.e.,

they can cause a critical deadlock; events S 2 and S5 depending on data belong to different subsets 2m

and 3m , i.e., they can cause a critical deadlock.

For option (c): data-dependent events and belong to the same subset without causing a critical deadlock;

events and, depending on data, belong to different subsets of and, i.e. can cause a critical deadlock.

For option (d): events
S 2 and

S3 depending on data belong to different subsets 1m and 2m , i.e., they

can cause a critical deadlock; data-dependent events S 2 and S5 belong to the same subset 2m without

causing a critical deadlock.

Based on the formulated conclusions, the following conclusion can be made:

1. Option (b) of placing particular events in subsets of the inclusion matrix is the worst since critical

deadlock situations may arise twice due to the dependence on data of two pairs of events:)3,2(SS and

)5,2(SS .

2. Options (a), (c), and (d) are equivalent in the number of possible critical deadlocks due to the dependence

on data for pairs of events:)5,2(SS - option (a) and (c), and)3,2(SS for option (d).

The further choice of the most optimal variant of placing particular events in subsets of the inclusion matrix

should, in the general case, be determined by the processing time of events running in parallel branches.

Namely, it is necessary to strive to ensure that the total processing time of events in all parallel branches

does not differ much from each other. Considering this circumstance, the worst option of (a), (c), and (d)

will be an option (c), because the events in the subsets are not evenly distributed for it: there are three events

in the subsets 1m and 3m , and only one event in the subset 2m . The final choice of the optimal option for

9

placing particular events in subsets of the inclusion matrix from the two remaining options (a) and (d), which

have, as noted above, essentially the same placement of particular events in subsets, will be determined by

the processing time of particular events. The best option is the one for which the event processing time in

all subsets will have the smallest value.

Let us consider the second option for choosing the most optimal placement of particular events in subsets

of the inclusion matrix that are connected by data. The mentioned method is based on correcting an initial

CA by means of an equivalent transformation, which would allow obtaining such a partition of particular

events into groups of events (incompatible), when, for example, some event
αS belonging to a subset mi

and having a connection by data with an event
βS would never be executed simultaneously with the event

βS that belongs to a different subset m j . If there are such events, then a conflict situation due to the

resource will not occur.

Such an adjustment of the initial CA is possible if there are events in individual branches of the CS that,

although they are related according to data with events included in other parallel branches, within their

branch, they are not connected by information and control (Vashkevich & Biktashev, 2015). We can use the

results of the following intersection operations:

  α α
, ,α ,α 1,

i i
i iA i km mS S    , (2)

Where
α
i

S is the content of the row from the matrix with event compatibility by information and control;

the matrix is designated by the symbol
αS of an event belonging to the subset im ; k is the number of

events included in the subset im .

If the result of the intersection is not equal to  , then we get a subset A of the desired events. As an

illustration of the technique, let us take the option of placing particular events in 3 subsets (Figure 3, a), for

which events
2S and

5S depending on data, belong to different subsets 1m and 2m and cause a critical

deadlock. Let us assume that, based on the results of the determinization of the corrected CA, the

compatibility matrix of particular events was built, which has the form (Figure 5):

The results of the intersection operations for subsets 1m , 2m and 3m (Figure 3, a) with the rows of the

compatibility matrix (Figure 5) have the form:

1 2 31 4 6

1 2 32 5 5 2 7

1 3

, , ,

, , .

,

m m m

m m m

m

S S S

S S S S S

S

  

  



Based on the intersection results, we found events
2S and

5S , depending on the data, which belong to

different subsets, but never run simultaneously. These events are not related by information and control

(Figure 5), since according to the CA determination results, they were not included in any complete event.

10

 S1 S 2 S3 S 4 S5 S 6 S 7

S1
1 0 0 1 1 1 1

S 2
0 1 0 1 0 1 1

S3
0 0 1 1 1 1 1

S 4
1 1 1 1 0 1 1

S5
1 0 1 0 1 1 1

S 6
1 1 1 1 1 1 0

S 7
1 1 1 1 1 0 1

Figure 5. An example of the compatibility matrix for particular events, taking into account their relationship on

control and information

3. CONCLUSION

In conclusion, we note that, as noted earlier, the final choice of the optimal variant of placing particular

events along parallel branches will be determined by the time of implementation of the control algorithm in

its parallel branches. In the case when the correction of the composition of particular events in subsets of

the inclusion matrix does not allow avoiding critical deadlocks due to dependence on data, then it is

necessary to use one of the methods for synchronizing parallel processes that implement the control

algorithm and ensure the elimination of critical deadlocks.

.

In this case, the highest priority is assigned to the process that includes the largest number of events in the

subset im in order to organize the entry of processes into their critical intervals. In this case, the processing

times of events in subsets may be somewhat leveled.

ACKNOWLEDGMENTS

RFBR funded the reported study according to the research project № 19-07-00516.

REFERENCES

Allan, C., Avgustinov, P., Christensen, A. S., Hendren, L., Kuzins, S., Lhoták, O., de Moor, O., Sereni, D.,
Sittampalam, G., Tibble, J. (2005). Adding trace matching with free variables to AspectJ. In: Proceedings of the

20th Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages, and
Applications. San Diego, CA, USA: OOPSLA '05. ACM, New York, NY. 345-364.

Baumgertner, S. (2012). An Analog of the Kleene Theorem for Generalized Nondeterministic Finite Automaton.
Vector of Science, Togliatti State University 4 (22), 23–25 (in Russian).

Baumgertner, S., Melnikov, B. (2012). Mathematical Model of Automata for Generalized Regular Expressions.
Heuristic Algorithms and Distributed Computing in Applied Problems: coll. Monogr. Tolyatti: Publishing house
of TSU, 16–23. (in Russian).

11

Clarke, E.M., Grumberg, O., Peled, D. (2002). Program Model Verification: Model Checking. Translation from

English. M., MCCME. 416 p.

Gavrilov, S.A., Devyatov, V.V., Pupyrev, E.I. (1977). Logical Design of Discrete Automata. M.: Nauka. 351 p.

Gorbatov, V.A., Smirnov, M.I., Khalytchiev, I.S. (1991). Logical Control over Distributed Systems Ed. by V.A.

Gorbatov. M., Energoatomizdat. 288 p.

Hoare, C. (1989). Interacting Sequential Processes. M., Mir., 264 p. (in Russian).

Hopcroft, J., Motwani, R., Ullman, J. (2002). Introduction to Automata Theory, Languages, and Computation.

М.: Williams. 528 p. (in Russian).

Hopcroft, J.E., Ullman, J.D. (1979). Introduction to Automata Theory, Languages, and Computation.

Reading/MA: Addison-Wesley. ISBN 0-201-02988-X.

Martin, J. (2010). Introduction to Languages and the Theory of Computation. McGraw Hill. — ISBN 978-

0071289429.

Martyshkin, A.I., Pashchenko, D.V., Trokoz, D.A., Sinev, M.P., Svistunov, B.L. (2020). Using queuing theory
to describe adaptive mathematical models of computing systems with resource virtualization and its verification
using a virtual server with a configuration similar to the configuration of a given model. Bulletin of Electrical

Engineering and InformatCES, 9(3), 1106-1120.

Melnikov, B. (2010). Extended Non-Deterministic Finite Automaton. Fundamenta Informaticae. 104 (3), 255–

265.

Melnikov, B. (2010). Once More on the Edge-Minimization of Nondeterministic Finite Automaton and the

Connected Problems. Fundamenta Informaticae 104 (3), 267–283.

Melnikov, B., Vakhitova, A. (1998). Some More on the Finite Automaton. J. of Applied Math. and Comp. (The
Korean J. of Comp. Appl. Math.) 5 (3), 495–506.

Nikolaevich, K.N., Aleksandrovich, Z.S., Nikolaevna, P.U., Petrovich, S.M., Vladimirovich, B.V., Anatolievich,
T.D., Ivanovich, M.A., Aleksandorovich, K.V. (2020). Instrumental System of Temporal Analysis of Models of
Concurrent Computing Systems Constructed Using Theory of Temporary Finite State Automata. Moscow

Workshop on Electronic and Networking Technologies, MWENT 2020 - Proceedings, 9067448.

Pashchenko, D., Sinev, M., Trokoz, D., Martyshkin, A., Veselova, M., Zabrodina, K., Safronova, V., Puchkova,
U. (2019). Formalized Description of Message Encryption in Messaging Apps Using Automata Theory.
Proceedings - 2019 21st International Conference Complex Systems: Control and Modeling Problems, CSCMP

2019, 2019-September, с. 565-569, 8976517.

Pashchenko, D., Trokoz, D., Konnov, N., Sinev, M. (2015). Formal transformation inhibitory safe Petri nets into

equivalent not inhibitory. Procedia Computer Science, 49(1), с. 99-103. DOI: 10.1016/j.procs.2015.04.232

Pashchenko, D., Trokoz, D., Martyshkin, A., Sinev, M. (2019). Using Algebra of Hyper-Dimensional Vectors
for Heuristic Representation of Data while Training Wide Neural Networks. Proceedings - 2019 21st
International Conference &quot;Complex Systems: Control and Modeling Problems&quot;, CSCMP

2019, 2019, 2019-September, 168-171, 8976507.

Pashchenko, D., Trokoz, D., Sovetkina, G., Nikolaeva, E., Sinev, M., Dubravin, A., Konnov, N. (2016). The

methodology of multicriterial assessment of Petri nets' apparatus. MATEC Web of Conferences, , 44, 01009

12

Pashchenko, D.V., Martyshkin, A.I., Trokoz, D.A. (2020). Decomposition of Process Control Algorithms for
Parallel Computing Systems Using Automata Models. Proceedings - 2020 International Russian Automation

Conference, RusAutoCon 2020, 839-845, 9208165.

Pashchenko, D.V., Trokoz, D.A., Martyshkin, A.I., Sinev, M.P., Svistunov, B.L. (2020). Search for a substring

of characters using the theory of nondeterministic finite automata and vector-character architecture. Bulletin of
Electrical Engineering and InformatCES, 9(3), 1238-1250.

Saglam, Bilge E., Mooney III, V.J. (2001). System-on-a-Chip Processor Synchronization Support in Hardware.
In: Proceedings of the conference on Design, automation, and test in Europe, IEEE Press Piscataway. NJ, USA,

633-641.

Salomaa, A. (1986). Pearls of the Theory of Formal Languages. M.: Mir. 159 p. (in Russian).

Vashkevich, N. P., Biktashev, R.A. (2015). Automaton-Based Representation of the Parallel Process Control
Algorithms in the ‘Reader-Writer’ Problem Based on the Concept of Non-Determinism and the Monitor

Mechanism. News of the Higher Educational Institutions. Volga Region. Engineering Science 2, 65–75. (in
Russian).

Vashkevich, N.P. (1973). On One Way to Synthesize Digital Automaton According to the Flowgraph of an
Algorithm with Parallel Branches. Computer Engineering: Interuniversity Coll. Sc. Works 1 (2), 49-57 (in

Russian).

Vashkevich, N.P. (1994). Synthesis of Automaton Control Models for Parallel Interacting Processes. New

Information Technologies and Systems: Proc. of Intern. Sc. and Tech. Conf. - Penza, 49–54 (1994). (in Russian).

Vashkevich, N.P. (2002). Automaton Approach to Formalizing Algorithms of Control over the Interaction of

Parallel Processes when Applying to Variables (Resource) Shared by n-Processes. Computational systems and
technologies: Interuniversity Coll. Sc. Works - Penza: Publishing House of the Penza State University 1 (27), 3–

10. (in Russian).

Vashkevich, N.P., Biktashev, R.A. (2016). Nondeterministic Automata and Their Use for the Implementation of

Parallel Data Processing Systems: Monograph. Penza: Publishing house of PSU, 394 p.

Vashkevich, N.P., Vashkevich, S.N. (1993). Formalization of Control Algorithms with Interacting Parallel

Branches. Computer Engineering: Interuniversity Coll. Sc. Works - Penza: Publishing House of the Penza State
Technical University 18, 17–22. (in Russian).

Vashkevich, S. N., Filatov, A.Yu. (1994). Structural Synthesis of Controllers Specified by NDA. Information
Technologies and Systems: Proc. of Intern. Sc. and Tech. Conf. - Penza. p. 123 (in Russian).

