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ABSTRACT 
 

The paper deals with the issues of decomposition of control algorithms for the processes in parallel 

computing systems and the use of automaton models. When designing parallel processing systems, an 

important task is the formal presentation of process control algorithms since they allow achieving a 

packaged solution to the problems of specification, development, implementation, verification, and analysis 

of complex control systems, including the control of interacting processes and resources in parallel 

computing systems. It is especially necessary to use formal methods to verify complex information 

processing systems by model testing. One of the methods for the formal description of control algorithms 

is based on the use for these purposes of the nondeterministic automaton (NDA) logic, which is a method 

that allows one to present control algorithms for information processing in the form of systems of canonical 

equations describing all particular events implemented in the algorithm. The advantage of such a language 

is that all transitions in the control system are described not in terms of system states, but in terms of 

particular events, the simultaneous existence of which determines all states and transitions in the system; 

this allows avoiding a "combinatorial explosion" in the state space to the possibilities of means verification. 

Purpose of the paper: research of control algorithms for parallel computing systems using the NDA 

apparatus. The development and research object is parallel decomposition of control algorithms for parallel 

computing systems using automatic models. 
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RESUMEN 
 

El trabajo aborda los problemas de descomposición de algoritmos de control para los procesos en sistemas 

de computación paralelos y el uso de modelos de autómatas. A la hora de diseñar sistemas de procesamiento 

paralelo, una tarea importante es la presentación formal de los algoritmos de control de procesos, ya que 

permiten lograr una solución empaquetada a los problemas de especificación, desarrollo, implementación, 

verificación y análisis de sistemas de control complejos, incluyendo el control de los procesos que 

interactúan y recursos en sistemas informáticos paralelos. Es especialmente necesario utilizar métodos 

formales para verificar sistemas de procesamiento de información complejos mediante pruebas de modelos. 

Uno de los métodos para la descripción formal de los algoritmos de control se basa en el uso para estos fines 

de la lógica del autómata no determinista (NDA), que es un método que permite presentar algoritmos de 

control para el procesamiento de la información en forma de sistemas de ecuaciones canónicas. describiendo 

todos los eventos particulares implementados en el algoritmo. La ventaja de tal lenguaje es que todas las 

transiciones en el sistema de control se describen no en términos de estados del sistema, sino en términos 

de eventos particulares, cuya existencia simultánea determina todos los estados y transiciones en el sistema; 

esto permite evitar una "explosión combinatoria" en el espacio de estados a las posibilidades de verificación 

de medios. Objeto del trabajo: investigación de algoritmos de control para los procesos de sistemas 

informáticos paralelos utilizando el aparato NDA. El objeto de investigación y desarrollo es el proceso de 

descomposición en paralelo de algoritmos de control para sistemas de cómputo en paralelo utilizando 

modelos automáticos. 

 

Palabras clave: algoritmo de control, verificación, autómata finito, simulación, sistema paralelo, 

formalización. 

 

1. INTRODUCTION 

 

To increase control systems' performance for various processes and objects, including information 

processing control, various methods of parallelization of control algorithms at different stages of 

information processing are used. To effectively solve the problems of parallelizing algorithms, they use 

various formal methods for representing control algorithms. One of the promising formal languages for the 

specification of control algorithms is the nondeterministic automaton (NDA) language presented in the form 

of a canonical equation system (CES) (Hoare, 1989) describing all particular events implemented in the 

control system. Depending on the algorithm's detail for controlling the computational process, the events 

described by the CES could be understood as the execution of certain acts of information processing, which 

may include: the execution of micro-operations and macro-operations functional operators and subroutines, 

etc (Baumgertner, 2012). 

 

2. MATERIALS AND METHODS 

 

In the works of well-known domestic and foreign scientists (Gorbatov et al.,1991; Vashkevich & Filatov, 

1994; Vashkevich & Vashkevich, 1993; Hopcroft & Ullman, 1979; Hopcroft et al., 2002), (Martin, 2010; 

Allan et al., 2005;  Saglam, Bilge & Mooney III, 2001; Baumgertner & Melnikov, 2012; Baumgertner, 

2012) and (Salomaa, 1986; Melnikov, 2010; Melnikov & Vakhitova, 1998; Melnikov, 2010), great 

advantages of the automaton representation for logic control algorithms are noted, which include great 

convenience, compactness and simplicity of the formal representation for the CAs (control algorithms) in 

comparison with their representation based on the Petri net language. However, the authors attribute this 

advantage of the automaton CA representation only for representing sequence systems, taking into account 

the use of models of only deterministic automata (DA). For parallel action systems, the authors give 

preference to Petri nets, not taking into account the main advantage of the nondeterministic automaton 

(NDA) models, which is defined in the parallelism intrinsic for them (Vashkevich & Biktashev, 2016; 

Pashchenko et al., 2016; Pashchenko et al., 2015). 
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The formal language of CA representation based on the NDA logic can also be considered as a version of 

the basic language, which includes two components: a graphical form for the visual representation of 

algorithms in the form of graph-schemes with parallel branches (GSPB) and an analytical one in the form 

of a system of recurrent canonical equations (CES) describing all particular events implemented in the 

algorithm (Vashkevich & Biktashev, 2016; Vashkevich, 1973). 

 

To increase control systems' performance for various processes and objects, including information 

processing control, various methods of parallelization of control algorithms at different stages of 

information processing are used. They use various formal methods for representing the CA for effectively 

solving the problems of parallelizing algorithms and quantitative assessing their complexity. One of the 

most promising formal languages for the specification of control algorithms is the NDA language presented 

in the form of a canonical equations system (CES) (Vashkevich, 1994). 

 

When parallelizing the CA, we will take into account the dependence of events both in terms of information 

and control and in terms of data being shared variables or shared resources. The CA parallelization result 

should be the splitting of all particular events included in the original CES into groups of incompatible 

events when in each group, the events can only be executed sequentially (Pashchenko et al., 2020). 

 

Parallelization of an original CA is based on the use of the results of the CES determination, which is the 

original algorithm. The CES determining process is performed, in turn, based on the use of a direct transition 

table (DTT) of the NDA for all particular events implemented in the CA (Pashchenko et al., 2020; 

Martyshkin et al., 2020; Nikolaevich et al., 2020; Pashchenko et al., 2019; Pashchenko et al., 2019). Before 

starting the NDA DTT construction, all possible pairs of particular events are found in the original CA, 

which will correspond to the following four values: 

 

, , ,
,з ,ci j j jS S S S 

  
      

 

Where 
jS  is the event being formalized, 

iS  - an event immediately preceding the event 
jS ; 

,зjS  - an event symbolizing the logical conditions (LC) for the origin of the event 
jS  (the condition of 

its initial appearance); 

 
,cjS  - an event symbolizing the LC of saving the event 

jS  after its initial appearance; this event 

determines the duration of the event 
jS . 

In the simplest case, events 
,зjS  and 

,cjS  can be represented as particular input signals 
,i jx  that 

determine the transition from the event 
iS  to the event 

jS . In the case if that 
,cjS  0, then the signal 

,i jx  will take on the designation 
,j jx , which means the transition from the event 

jS  to the event 
jS  

again. 

 

Among all the pairs of events presented in the CA, the events are first found that do not have information 

and control connections between themselves but have a common immediately preceding event, from which, 

in fact, parallelization of the algorithm begins. 

 

The NDA direct transfer table (DTT) will have the following structure (Table 1) 
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Table 1. The structure of an NDA direct transition table representing the original CA 

Algorithm step The initial particular event at 

time t  tiS  

Logic transition conditions (Particular input 

signal)  ,
t

i jx  

Transition event 

 1t
jS   

1 2 3 4 

 

The DTT should be constructed in such a way that unattainable events of the original algorithm can be 

identified. For this purpose, the construction of the DTT begins with marking the initial event in column 2, 

and for all subsequent steps of the algorithm, column 2 is marked only by the event that took place in the 

previous steps of the algorithm and was marked in column 4. Taking into account the introduced 

designations of events and the CES for the CA, the corresponding NDA DTT can be represented in the 

general case by the following system of quantifier-free recursive canonical equations for all events realized 

in the CA and by the corresponding Moore’s NDA model: 

 

         1
,з ,з

,
V VjY t t t t t

j i j j j
i j j

S S S S S   ,    (1) 

 

Where  0, , 0 1
0

j n S  ; 
jY  is a combination of particular output signals to mark the event 

jS . 

The determination algorithm is considered in detail in (Vashkevich & Biktashev, 2016; Pashchenko et al., 

2020; Vashkevich, 2002) and is based on the search for events, the simultaneous existence of which in the 

original algorithm is possible. This means that there are values of logical variables for which several events 

are executed simultaneously with one implementation of the algorithm, i.e., such events are compatible. The 

determination algorithm execution result is a deterministic DTT, which is constructed in steps, starting with 

a combination of initial events, and has the following form (Table 2). For all subsequent steps in the 

construction of the transition table, filling in column 2 is carried out according to the same principle as for 

the DTT NDA. Based on the determination results, we get all possible combinations of particular events 

(Table 2, column 4) that can be performed simultaneously, i.e., they are compatible events. 

 
Table 2. Direct transition table of a deterministic automaton representing the original CA 

Algorithm step Population of initial particular events Combination of particular input 

signals at the transition 

A set of particular events at the 

transition 

 

 
Complete event  tma  

Complete input signal 

  ,x t
m sa a  

Complete event  1t
sa   

1 2 3 4 

 

Using the results of determinisation, it is possible to construct an auxiliary compatibility matrix (Figure 1) 

of all particular events of the original CA. 

 
 

S1  
… 

βS  … 

S n  

S1  
0 … 

β1,  … 

1,n  

… … … … … … 

αS  ,1α  … 

β,α  … 

,α n  

… … … … … … 

S n  ,1n  … 

β,n  … 0 

Figure 1. Matrix of compatibility of particular events, taking into account their relationship in management and 

information 
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The cells of the presented compatibility matrix are filled on the basis of the following: 
β,α  = 0, if 

αS  

and 
βS  are not compatible, and 

β,α  = 1, if 
αS  and 

βS  are compatible, i.e., jointly enter a complete 

event. It should be noted that when constructing the compatibility matrix based on the results of the 

determination algorithm, only the connections of events by control and information were taken into account, 

without taking into account the relationship of events by data. The connection by data will be taken into 

account when adjusting the event splitting into groups of incompatible events. 

An event connection by information indicates that the output information obtained from the execution of 

the event 
iS  is input information for the execution of the event jS

, since the event 
iS  is the event 

immediately preceding the event 
jS . Thus, such a relationship indicates that such events cannot under any 

circumstances be executed simultaneously. 

The connection of events by control takes place in the case that based on the results of the execution of the 

event 
iS , a LC  ,i jX

 are generated, which determines the transition to one of the events. Thus, the 

connection by control, which determines the sequence of events, is at the same time a connection by 

information. 

The algorithm for constructing the inclusion matrix is based on the requirements for the satisfaction of the 

following conditions: 

 

а) ; ; , 1, , ,i j i j H H Pm mi j      

b) 1 2 ,H nm m m   

 

Where im  and jm  are groups of incompatible events, 

H is the number of groups of incompatible events, 

n is the number of all particular events, 

P is the maximum number of particular events included incomplete events. 

Condition (a) means that each event can be included in only one single group of incompatible events. 

Condition (b) means that each event must be included in one of the groups of incompatible events. The last 

option will correspond to the serial port of the CA, which the main processor can carry out, and the first 

option will correspond to such a way of implementing the CA when the functions of the main processor will 

be assigned to the working processors, each of which implements one of the parallel branches of the CA. 

The main processor performs tasks that would be associated with the synchronization of working processors, 

including when there is a connection of particular events by the data due to contention. Usually, particular 

events that are incompatible with any of the original algorithm's events include events of two consecutive 

branches of a common CA. 

The first initial sequential part of the CA serves to perform preparatory functions. In turn, the second part 

of the sequential composition of the CA is needed to perform functions related to the processing of 

information obtained as a result of executing parallel branches of the algorithm. 

 

2.1. Taking into account the connection of events by data when parallelizing CA 

 

 Let us now consider the issues on correcting subsets' composition containing incompatible particular 

events, taking into account their dependence on the data. The need for such a correction arises in the case, 

when in the course of constructing a matrix for the inclusion of particular events determining the division 

of the entire set of events of the original CA into subsets of incompatible events, a situation may arise when 
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individual pairs of data-dependent events will be located in different subsets. This circumstance can cause 

critical deadlocks in implementing the information processing algorithm since such events require a shared 

resource. 

 

There are two possible solutions to the problem of correcting the composition of subsets of incompatible 

particular events, which will not lead to deadlocks. For the first option, the solution to such a problem is 

considered without considering the correction of the original CA, and the second is based on the correction 

of the original CA by its equivalent transformations. We can use an auxiliary matrix of the dependence of 

particular events on the data; this matrix has the form (Figure 2). 

 
 S1  

 
βS   S n  

S1  
0 … 

1,βD  … D n,1  

…      

αS  α,1D  … 
,βD

 … 
α,nD  

…      

S n  Dn 1,  … 
,βnD  … 0 

Figure 2. Matrix of dependence of particular events on data 

 

The matrix cells describing the dependence of particular events on data are filled based on the following: 

if a common resource is required to execute events 
αS  and 

βS , i.e. they have data dependencies, so to 

avoid data contention, they must only be executed sequentially. 0, D   if there is no data connection 

for events 
αS  and 

βS , i.e. they can run at the same time. 

Identification of particular events in different groups mi  that have a connection by data is carried out by 

sequentially performing operations of intersecting the row 
αS  of the data compatibility matrix (Figure 2) 

with the inclusion matrix row, starting with i = 1. 

If 
α βim S S , this means that the subset mi  contains some event 

βS  that has a data connection 

with the event 
αS . In this case, the event 

βS  can belong either to a subset mi  or to some other subset 

m j . In this case, the following options are possible: 

a) If 
α βmi S S , and 

β αmiS S , then 
αS  and 

βS  also belong to the same subset mi  and 

there will be no contention between them by the data, accordingly. 

b) If 
α βmi S S , then 

β αmiS S  and 
β αm jS S , then 

αS  and 
βS  both belong to 

different subsets mi  and m j
, accordingly; they should be placed in one subset of incompatible 

particular events to exclude data competition, if possible. 

In the event that a connection by data was found for the events presented in different groups, then the 

composition of the particular events of these groups should be adjusted. Let us illustrate the technique of 

such a correction with an example. 

Example. Let the following variants of the inclusion matrix (Figure 3) are obtained based on the results of 

CA determination, for which the event 
S 2  can be placed in the subset 1m  or 2m , and the event 

S5  can 
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be placed in the subset 2m  or 3m . Thus, Figure 3 shows four possible options for placing particular events 

in 3 subsets 1m , 2m  and 3m . 

 

 
Figure 3. Options for the inclusion matrix 

 

Let the matrix of event dependence on data for all particular events have the form shown in Figure 4. 

 
 S1  S 2  S3  S 4  S5  S 6  S 7  

S1  
0 0 0 0 0 0 0 

S 2  
0 0 1 0 1 0 0 

S3  
0 1 0 0 0 0 0 

S 4  
0 0 0 0 0 0 0 

S5  
0 1 0 0 0 0 0 

S 6  
0 0 0 0 0 0 0 

S 7  
0 0 0 0 0 0 0 

Figure 4. The example of a matrix of particular event dependence on data 

 

Using the possible options for the inclusion matrix, we sequentially execute the operations of the intersection 

between the row 
αS  of the compatibility matrix for particular events according to the data (Figure 4) and 

the rows of the inclusion matrix (Figure 3); as a result, we obtain the following options of such intersections, 

which are not equal to : 
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Option (а) 

,

,

,

,

12 3

13 2

15 2

22 5

m

m

m

m

S S

S S

S S

S S









 

Option (b) 

,12 3

,23 2

,25 2

,32 5

m

m

m

m

S S

S S

S S

S S









 

Option (c) 

,12 3

,13 2

,15 2

,32 5

m

m

m

m

S S

S S

S S

S S









 

Option (d) 

,12 3

,23 2

,22 5

.25 2

m

m

m

m

S S

S S

S S

S S









 

 

Based on the obtained variants of intersections between the row 
αS  of the compatibility matrix of 

particular events by data and the rows of the inclusion matrix, the following conclusions can be drawn: 

For option (a): data-dependent events S 2  and S3  belong to the same subset 1m  without causing a 

critical deadlock; events S 2  and S5 , depending on data, belong to different subsets 1m  and 2m , i.e., 

they can cause a critical deadlock. 

 

For option (b): events S 2  and S3  depending on the data belong to different subsets 1m  and 2m , i.e., 

they can cause a critical deadlock; events S 2  and S5  depending on data belong to different subsets 2m  

and 3m , i.e., they can cause a critical deadlock. 

For option (c): data-dependent events and belong to the same subset without causing a critical deadlock; 

events and, depending on data, belong to different subsets of and, i.e. can cause a critical deadlock. 

For option (d): events 
S 2  and 

S3  depending on data belong to different subsets 1m  and 2m , i.e., they 

can cause a critical deadlock; data-dependent events S 2  and S5  belong to the same subset 2m  without 

causing a critical deadlock. 

Based on the formulated conclusions, the following conclusion can be made: 

1. Option (b) of placing particular events in subsets of the inclusion matrix is the worst since critical 

deadlock situations may arise twice due to the dependence on data of two pairs of events: )3,2( SS  and 

)5,2( SS . 

 

2. Options (a), (c), and (d) are equivalent in the number of possible critical deadlocks due to the dependence 

on data for pairs of events: )5,2( SS  - option (a) and (c), and )3,2( SS  for option (d). 

The further choice of the most optimal variant of placing particular events in subsets of the inclusion matrix 

should, in the general case, be determined by the processing time of events running in parallel branches. 

Namely, it is necessary to strive to ensure that the total processing time of events in all parallel branches 

does not differ much from each other. Considering this circumstance, the worst option of (a), (c), and (d) 

will be an option (c), because the events in the subsets are not evenly distributed for it: there are three events 

in the subsets 1m  and 3m , and only one event in the subset 2m . The final choice of the optimal option for 
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placing particular events in subsets of the inclusion matrix from the two remaining options (a) and (d), which 

have, as noted above, essentially the same placement of particular events in subsets, will be determined by 

the processing time of particular events. The best option is the one for which the event processing time in 

all subsets will have the smallest value. 

 

Let us consider the second option for choosing the most optimal placement of particular events in subsets 

of the inclusion matrix that are connected by data. The mentioned method is based on correcting an initial 

CA by means of an equivalent transformation, which would allow obtaining such a partition of particular 

events into groups of events (incompatible), when, for example, some event 
αS  belonging to a subset mi  

and having a connection by data with an event 
βS  would never be executed simultaneously with the event 

βS  that belongs to a different subset m j . If there are such events, then a conflict situation due to the 

resource will not occur. 

 

Such an adjustment of the initial CA is possible if there are events in individual branches of the CS that, 

although they are related according to data with events included in other parallel branches, within their 

branch, they are not connected by information and control (Vashkevich & Biktashev, 2015). We can use the 

results of the following intersection operations: 

  α α
, ,α ,α 1,

i i
i iA i km mS S      ,   (2) 

Where 
α
i

S  is the content of the row from the matrix with event compatibility by information and control; 

the matrix is designated by the symbol 
αS  of an event belonging to the subset im ; k is the number of 

events included in the subset im . 

If the result of the intersection is not equal to  , then we get a subset A of the desired events. As an 

illustration of the technique, let us take the option of placing particular events in 3 subsets (Figure 3, a), for 

which events 
2S  and 

5S  depending on data, belong to different subsets 1m  and 2m  and cause a critical 

deadlock. Let us assume that, based on the results of the determinization of the corrected CA, the 

compatibility matrix of particular events was built, which has the form (Figure 5): 

 

The results of the intersection operations for subsets 1m , 2m  and 3m (Figure 3, a) with the rows of the 

compatibility matrix (Figure 5) have the form: 

 

1 2 31 4 6

1 2 32 5 5 2 7

1 3

, , ,

, , .

,

m m m

m m m

m

S S S

S S S S S

S

  

  



 

Based on the intersection results, we found events 
2S  and 

5S  , depending on the data, which belong to 

different subsets, but never run simultaneously. These events are not related by information and control 

(Figure 5), since according to the CA determination results, they were not included in any complete event. 
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 S1  S 2  S3  S 4  S5  S 6  S 7  

S1  
1 0 0 1 1 1 1 

S 2  
0 1 0 1 0 1 1 

S3  
0 0 1 1 1 1 1 

S 4  
1 1 1 1 0 1 1 

S5  
1 0 1 0 1 1 1 

S 6  
1 1 1 1 1 1 0 

S 7  
1 1 1 1 1 0 1 

Figure 5. An example of the compatibility matrix for particular events, taking into account their relationship on 

control and information 

 

 

3. CONCLUSION 

 

In conclusion, we note that, as noted earlier, the final choice of the optimal variant of placing particular 

events along parallel branches will be determined by the time of implementation of the control algorithm in 

its parallel branches. In the case when the correction of the composition of particular events in subsets of 

the inclusion matrix does not allow avoiding critical deadlocks due to dependence on data, then it is 

necessary to use one of the methods for synchronizing parallel processes that implement the control 

algorithm and ensure the elimination of critical deadlocks. 

. 

In this case, the highest priority is assigned to the process that includes the largest number of events in the 

subset im  in order to organize the entry of processes into their critical intervals. In this case, the processing 

times of events in subsets may be somewhat leveled. 
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