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ABSTRACT 
 

The article considers the methodology of forming the matrix of A-parameters of a rail line, represented by 

a multi-pole equivalent circuit. It is shown that when using a four-pole equivalent circuit of a rail line in 

case of violation of the equipotentiality of the circuit, it is impossible to take into account the flow of current 

along bypass paths, along the earth path, and the influence of adjacent track circuits. A multi-pole equivalent 

circuit of a rail line is represented as a 2x4 pole, in the rail lines of which self-induction EMF sources are 

included, and an earth path is used as the second wire. An equivalent multi-pole of equivalent circuit is 

represented by two groups of poles – at the input and output of the rail line, including one common (ground). 

The parameters of all elements of the equivalent multi-pole circuit are presented in the form of matrices, 

which makes it possible to analyze the state of the rail lines when changing the primary parameters of the 

rail multi-pole in a wide range. Using Kirchhoff's laws and solving a system of ordinary differential 

equations, the A-parameters of a rail multi-pole are obtained.  
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RESUMEN 
 

El artículo considera la metodología para formar la matriz de parámetros A de una línea ferroviaria, 

representada por un circuito equivalente multipolar. Se muestra que cuando se usa un circuito equivalente 

de cuatro polos de una línea ferroviaria en caso de violación de la equipotencialidad del circuito, es 

imposible tener en cuenta el flujo de corriente a lo largo de las rutas de derivación, a lo largo de la ruta de 

tierra y la influencia de circuitos de vía adyacentes. Un circuito equivalente multipolar de una línea 

ferroviaria se representa como un polo 2x4, en las líneas ferroviarias de las cuales se incluyen fuentes EMF 

de autoinducción, y se utiliza una ruta de tierra como segundo cable. Un circuito equivalente multipolar 

equivalente está representado por dos grupos de polos: en la entrada y salida de la línea ferroviaria, incluido 

uno común (tierra). Los parámetros de todos los elementos del circuito multipolar equivalente se presentan 

en forma de matrices, lo que permite analizar el estado de las líneas ferroviarias al cambiar los parámetros 

primarios del multipolar ferroviario en un amplio rango. Utilizando las leyes de Kirchhoff y resolviendo un 

sistema de ecuaciones diferenciales ordinarias, se obtienen los parámetros A de un carril multipolar. 
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1. INTRODUCTION 
 

In the analysis and synthesis of track circuits, one of the main tasks is to determine the dependencies between 

the complex amplitudes of the input and output electrical parameters of RL, depending on the class of its 

states. With the existing methods, these dependences are determined by the state equations of four-pole rail 

line equivalent circuits (Bruin et al., 2017). The analysis of established and transition modes in 

homogeneous long lines, which include rail lines in the absence of external and mutual influences, is based 

on the so-called telegraph equations. The solution of these hyperbolic partial derivatives differential 

equations is carried out using the Dalembert method and the Fourier method. 

 

The first method is based on the superposition of incident and reflected waves on each other and describes 

the physical processes in the lines well, but it is difficult to take into account the waves attenuation when 

implementing it. The second approach is based on the representation of the phenomena of summed standing 

waves, it is less "physical", but more convenient for practical calculations.  

 

Despite the attractiveness of both methods, the analytical description of energy processes has a limited range 

of application, namely, it does not allow analyzing the longitudinal and transverse mutual influences of 

lines. When using the scheme of substitution of a long line by a four-pole, the expressions for determining 

the matrices of A-parameters are formed by the mode of operation, and therefore it is impossible to develop 

a single algorithm of solving them on a computer. 

 

In the equipotential state of the rail line (RL) scheme, the current does not flow through the earth path, but 

if the equipotentiality is violated, the current begins to flow through the earth path from the source to the 

receiver. This feature is especially necessary to take into account when constructing intelligent train traffic 

control systems, when it is impossible to ensure invariance to perturbations affecting the rail line survey 

signal additively or parametrically (Tarasov, 2017; Tarasov et al., 2020).  

 

To compile a mathematical model of a track circuit as a sensor of primary information, it is necessary to 

obtain a matrix of A-parameters of a three-wire rail line, which will allow, together with the matrices of 

elements of matching devices, to study the nature of spreading of the survey signal in various classes of RL 

states (Gao and Ma, 2021). 

 

2. METHODOLOGY 
 

Based on the specific tasks of analysis and synthesis of rail circuits-devices for monitoring the state of rail 

lines, their mathematical model have to meet various requirements. For example, to accurately describe the 

processes of establishing the dependence between the complex amplitudes of currents and voltages at the 

input and output of the rail line, to evaluate the energy parameters of power transmission from the source 

of the rail lines survey signal to the classifier of conditions, to analyze the dynamic range of changes in 

complex amplitudes of voltages and currents depending on change in internal parameters and external 

influences on the information transmission path, to have a universal equivalent circuit that allows for a 

comprehensive analysis of the quality of track circuits functioning in all modes. These requirements are 

contradictory, and it is impossible to generalize mathematical models in various states of rail lines when 

using four-pole substitution schemes. 

 

In this regard, the objective function of this work is to develop a generalized multi-pole equivalent circuit 

for a rail line, which allows forming a matrix of A-parameters of a rail multi-pole, that considers the 

influence of external and internal factors, fluctuation in the parameters of the equivalent circuit components, 
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as well as the mutual influence of track circuits – sensors of states of rail lines (Kravtsov, 2015; Shamanov, 

2013) (Figure 1). 
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z2dx
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İ2x+dİ2x İ2x

İ1x

g12dx
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Figure 1. Scheme of a multi-pole element dx of a rail line: 
1 2,z z – the longitudinal resistances of the rails; 

1 2,g g - the 

ground conductivity of the rails; 
12g - the conductivity of the ballast and cross-sleepers; 

Mz - the mutual induction 

resistance; x - the distance from the end of the rail line; 
1 2,x xI I - the complex amplitudes of the currents flowing along 

the first and second rails; 
1 2,x xU U - the complex amplitudes of the stresses of the first and second rail threads relative 

to the ground. 

 

When displaying the RL in the form of a multi-pole circuit, the matrix of parameters of the six-pole, 

presented as a special case in Figure 2, has a dimension equal to four (Volkov et al., 2005).  

 

2х4 pole
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Figure 2. Equivalent circuit of the rail line in the form of a multi-pole. 

 

If, in the particular case, we consider the currents 
1I and 

2I flowing in, and 
3I and

4I -flowing out, then the 

system of linear equations, with which it is possible to determine the coefficients of the matrix of A-

parameters, has the form: 

 

1 11 3 12 3 13 4 14 4

1 21 3 22 3 23 4 24 4

2 31 3 32 3 33 4 34 4

2 41 3 42 3 43 4 44 4

,

,

,

.

U a U a I a I a U

I a U a I a I a U

I a U a I a I a U

U a U a I a I a U

   

   










  

   

 

 

To simplify the form of formulas, complex amplitudes of voltages and currents, as well as complex passive 

elements, are conditionally designated in a simplified form. In accordance with the second Kirchhoff law, 

for a section of a rail line of dx length, we have (Polyanin and Manzhirov, 2006): 

 

11 1 1 1 1 ,( ) Mz dx i u u du e      
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given that 
1 2M Me z dx i   , and in accordance with Figure 1, we obtain a system of differential equations of 

the following form: 

 

1
1 1 2

1
1 12 1 12 2

2
12 1 2 12 2

2
1 2 2

,

( ) ,

( ) ,

.

M

M

du
z i z i

dx

di
g g u g u

dx

di
g u g g u

dx

du
z i z i

dx


 


   


    


  


 

 

The solution of the system according to 
1( )U x  (Figure 1) in the normal mode is determined by the 

expression: 

 

1 1 21 4231 2ch sh ch sh( )u x A Ax A Ax x x       (1) 

 

where 2 2

1 2 2 0 2 2 2 0; ;a a a a a a        

 
2

0 1 2 1 2 1 12 2 12( )( );Ma z z z g g g g g g     

 

 2 12 1 2 1 1 2 2

1
2 .

2
Ma g z z z g z g z        

 

1 2 3 4, , ,A A A A - constant, arbitrarily dependent on the boundary conditions of the problem. The rates of the 

complex values of voltages and currents
1 2 1 2( ), ( ), ( ), ( )U x U x I x I x  for each correctly posed case can be 

expressed in terms of the values of constants
1 2 3 4, , ,A A A A , some additional coefficients

1 2,h h , and a square 

matrix [ ] 1,2; 1,2 :ijy i j    

 

2 1 11 2 2 31 2 24ch sh ) ch s( h( )) ,( x xu x h A A h A Ax x       (2) 

 

 
2

1 1 1 12 12

1

2 12 1 12

( )
;

( )

M

M

z g g z g
h

z g g z g

   


 
 

 
2

2 1 1 12 12

2

2 12 1 12

( )
;

( )

M

M

z g g z g
h

z g g z g

   


 
 

 

 

1 11 1 1 2 1 12 3 2 4 2( ) ( sh ch ) ( sh ch ),i x y A x A x y A x A x        (3) 

 

2 21 1 1 2 1 22 3 2 4 2( ) ( sh ch ) ( sh ch ),i x y A x A x y A x A x        (4) 

 

where 
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1 2 1 2 2 2

2

1 1 1 2 2 11 2

( ) ( )1
[ ] .

( ) ( )

M M

ij

M MM

z h z z h z
y

h z z h z zz z z

 

 

  
  

   
 

 

Let's express the values of the complex amplitudes 
1 1 2 2, , ,U I U I in terms of the RL parameters, and to do this, 

we differentiate ( )x  both parts of the equation by the coordinate: 

 
2

1 1 2
12

.M

d u di di
z z

dx dx dx
   (5) 

 

Then let’s transform the right side of equation (5): 

 

   

   

1 12 1 12 2 2 12 2 12 1

1 12 12 2 1

2

2 12

1
12

1 1 2 1

) )

)

(

( ( )

(

.

M

M M

d u
z z

dx

u z z u z

g g u g u g g u g u

g g g gzg g

   

   

  

 

 (6) 

 

In equation (6), we express the variable
2u : 

 

 
2

1
2 1

1 1

1 1 12 12

2 12 12

1
(

(
)

)
M

M

u g g
d u

u z z
z zg dx

g
g g

 
 

 
 


 .

 

 

Differentiating twice on x and substituting in the right side of the equation for 
2

1

2

d u

dx
and u1, we get:  

 



  

2 2 2 2

1 1 1 1 2 1 2 3 2 2 4 2

2

2

112 12

1 1 2 1 3 2 4 2 1 11 2 12

ch sh ch sh
)

ch sh ch sh )

1

(

(

M

M

A x A x A x Au
z z

x
g g g

A x A x A x A x g gz g z

       

   

   
 

    



 

 

2 2

1 12 1 12 1 12 21 1

1 1

12
1 1 2 1

2 12 12 2 12 12

) )
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(
h

( ) )
s

(

(

M M

M M

g g g g g g
A x A x

g g

z z

g

z z

z g g gz z z

 
 

     
 


 





 

2 2

2 12 1 12 2 12 1 12
3 2 4 2

2 12 12 2 12 12

1 1

1 1

) )
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( (

( ) )
sh

(

M M

M M

g g g g g g
A x A x
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1 1 1 2 1 2 3 2 4 2( )( ch sh ) ( )( ch sh ),F A x A x F A x A x          

 

where 
2

12 1 1 12

2 12 1 12

( )
( ) .

( )

M

M

z g z g g
F

z g g z g




  


 
 

 

We find expressions for the currents 
1i and 

2i and differentiate (1) by x . For convenience, we denote: 

 

1
1 1 1 1 1 2 1 2 3 2 2 4 1

2
1 1 1 1 1 1 1 2 1 2 2 3 2 2 2 4 1

sh ch sh ch ,

sh ch sh ch ,

du
в A x A x A x A x

dx

du
в h A x h A x h A x h A x

dx

       

       

    

    

 

 

where  
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2

1 12 1 1 12
1 1

2 12 1 12

2

2 12 1 1 12
2 2

2 12 1 12

( )
( ) ;

( )

( )
( ) .

( )

M

M

M

M

z g z g g
h F

z g g z g

z g z g g
h F

z g g z g







  
 

 

  
 

 

 

 

As a result, we get a second-order system of linear equations, relative to the desired i1 and i2: 

 

1 1 2 1

1 2 2 2

;

.

M

M

z i z i в

z i z i в

 


 
 

 

Having solved the system, we have: 

 

1 2 2 2 1 1 1
1 1 1 2 12 2

1 2 1 2

1 2 2 2
3 2 4 22

1 2

11 1 1 2 1 12 3 2 4 2

( sh ch )

( sh ch )

( sh ch ) ( sh ch ),

M M

M M

M

M

в z в z z z h
i A x A x

z z z z z z

z z h
A x A x

z z z

y A x A x y A x A x

 
 

 
 

   

 
   

 


  



   

 

 

where 2 1 2 2
11 1 12 22 2

1 2 1 2

; ;M M

M M

z h z z h z
y y y y

z z z z z z

 
 

 
 

 

1 1 1
2 1 1 1 2 12 2

1 2 1 2

2 1
2 3 2 4 22

1 2

21 1 1 2 1 22 3 2 4 2

( sh ch )

( sh ch )

( sh ch ) ( sh ch ),

M

M M

M

M

z z h z
i A x A x

z z z z z z

h z z
A x A x

z z z

y A x A x y A x A x

  

  

   


   

 


  



   

 

 

where 1 1 2 1
21 1 22 22 2

1 2 1 2

; .M M

M M

z h z h z z
y y y y

z z z z z z

 
 

 
 

 

As a result, we get a system of equations using the notations of complex amplitudes of currents and voltages 

according to Figure 2: 

 

3

4 1

1 3

1 2

3

4

3

11 2 12 4

21 2 22 4

,

,

,

.

A A

A A

y A y A

y A

U

U h h

I

I y A









 










 

 

Let's specify the parameters 
1 2 3 4, , ,A A A A in terms of complex amplitudes

3 4 3 4, , ,U U I I : 

 

3 2 4 3 4

2 1

22 12
1 2

11 21
3

3
4

4 1 4 3

2 1

; ;

; .

y y
A A

d

y y
A

U h U I I

h h

U U h I

h
A

I

h d






 









 (7) 
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11 22 21 12.d y y y y   

 

In expressions (1-4), we assume that the coordinate x l , (l is the length of the line), then: 

 

11 1 1 11 1 2 12 2 3 12 2 4

21 1 1 2

1

2

1 1 1 1 2 2 3 2 4

2 1 1 1 1 1 2 2 2 3

1 1 2 22

2

2 3

2 4

22 2 4

,

,

,

,

y S A y C A y S A y C A

y S A y C A y S A y C

I

I

U C A S A C A S A

U h C A h S A h C A h S A

A





   



   


  



  



 (8) 

 

where 
1 1 1 2 2 21 2sh ; ch ; sh ; ch .S Sl C l l C l       

 

Setting
1 2 3 4, , ,A A A A , according to (7) in the right part of equations (8), and grouping by 

3 4 3 4, , ,U U I I , we get 

the desired matrix A –a three-wire electric line. 

 

2 1 1 2 22 1 21 2 11 2 12 1 2 1

2 1 2 1

2 11 1 1 12 2 11 22 1 12 21 2 11 12 2 1 12 2 11 1

2 1 2 1

2 21 1 1 22 2 21 22 1 2 11 22 1 12 21 2 22 2 21 1

2 1 2 1

2 1 1 2

( )

[A]
( )

( )

h C h C y S y S y S y S C C

h h d d h h

h y S h y S y y C y y C y y C C y S y S

h h d d h h

h y S h y S y y C C y y C y y C y S y S

h h d d h h

h h C C

h

   

 

   

 


   

 

 1 22 1 2 21 2 2 11 2 1 12 1 2 2 1 1

2 1 2 1

h y S h y S h y S h y S h C h C

h d d h h

  

 

 (9) 

 

3. RESULTS 
 

To study the trajectory of changes in the complex amplitudes of voltages and currents at the RL output, the 

authors developed a machine program for analyzing track circuits ARC-1, and using the developed matrix 

[A] of parameters of the RL multi-pole in the normal mode class (9), simulation modeling was performed 

and the simulation results were presented as a hodograph of the complex voltage amplitude at the output of 

the rail multi-pole in Figure 3.  
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Figure 3. Hodograph of the complex amplitude of the output voltage of the rail line in the simulation of the normal 

mode. 

 

When modeling the asymmetric mode with the simulation of the asymmetry of one rail connected to the 

contact-line supports, using the matrix A-parameters of the rail line obtained by the developed method, the 

possibility of analyzing the asymmetric states of the rail lines was confirmed. Thus, in the range of change 

in the conductivity of the supports from 0.02 to 2 cm /km, the dynamic range of voltage change is Kd =1.21, 

and this phenomenon cannot be taken into account when modeling a four-pole equivalent circuit of a rail 

line. 

 

4. CONCLUSION 
 

The multifactorial nature of the states space of a rail line, caused by a variety of classes of states, as well as 

the impact of destabilizing factors that lead to the appearance of transverse and longitudinal asymmetry and 

a significant range of change in perturbing influences, forms the task of developing new models of the rail 

lines states. One of the approaches to solving the problem is to consider a rail line, which is a line with 

distributed parameters, as a multi-pole. The developed generalized mathematical models are represented by 

a cascade connection of the matrices [A] of the parameters of the track circuit elements (USZn – DTn – RL– 

DTk – USZk ), represented by multi-poles. Such representation of the structure of the track circuit allows to 

flexibly change the substitution scheme depending on the RL configuration and to conduct a study of the 

space of states of any track circuits types. The results of the simulation modeling allow us to conclude that 

the multi-pole representation of the components of the track circuit schemes takes into account the violation 

of the equipotentiality of the scheme and allows to study the flow of currents through bypass circuits and 

the earth path. 

 

REFERENCES 
 

Bruin, T., Verbert, K. and Babuska, R. (2017). Railway track circuit fault diagnosis using recurrent neural 

networks. IEEE Transactions on Neural Networks and Learning Systems, 28 (3), 523–533. 

 



1776 

Gao, H. and Ma, H. (2021). Influence of circuit signal integrity on electromagnetic compatibility and 

countermeasures. In: L. Wang (Ed.), Global Intelligent Industry Conference, SPIE Proceedings (vol. 11780, 

1178025). Bellingham, WA: SPIE. 

 

Kravtsov, Yu. A. (2015). Electromagnetic compatibility of track circuits and electric stock with 

asynchronous traction drive. Automation on Transport, 1, 47-56.  

 

Polyanin, A. and Manzhirov, A. (2006). Handbook of mathematics for engineers and scientists. London, 

UK: Chapman and Hall/CRC Press. 

 

Shamanov, V. I. (2013). Electromagnetic compatibility of railway automatics and telemechanics systems. 

Moscow, Russia: EMC for Education on Railway Transport.  

 

Tarasov, E. M. (2017). On ensuring invariance in problems of control of rail-line conduction. Russian 

Electrical Engineering, 88 (3), 105–108. 

 

Tarasov, E. M., Andronchev, I. K., Bulatov, A. A. and Tarasova, A. E. (2020). Development of a trainable 

classifier of state of rail lines with multiple patterns of image recognition. Engineering Technologies and 

Systems, 30 (4), 659-682. 

 

Volkov, E. A., Sankovskij, Je. I. and Sidorovich, D. Yu. (2005). Theory of linear electric circuits of railway 

automatics, telemechanics and communications. Moscow, Russia: Marshrut. 

 

 


