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ABSTRACT 
 

In this study, the quality system for Ti-6Al-4V alloy manufacturing by selective laser melting was 

analyzed by using the Grey relation analysis and additive manufacturing quality methodology. In 

proposed methodology, the multicriteria problem is solved by selecting an optimal alternative AM 

technological process parameters combinations to meet the required quality parameters (desired goals) of 

the aerospace parts according several criteria. Decision algorithm for planning additive manufacturing was 

developed for building alternatives matrix and the adaptation coefficient evaluating. As quality criteria in 

model were chosen accuracy, roughness, strength, cost, printing time. Based on the analysis of the values 

of the adaptation coefficients for SLM, DMD and EBM technologies, the first type of technology for the 

manufacture of aerospace product, selective laser melting, is accepted as optimal. 

 

Keywords: Aerospace parts; Additive manufacturing; Quality parameters; Grey relation analysis; 

Adaptation coefficient. 

 

RESUMEN 
 

En este estudio se analizó el sistema de calidad para la fabricación de aleaciones Ti-6Al-4V mediante 

fusión selectiva por láser utilizando la metodología de análisis de relación de Gray y calidad de 

fabricación aditiva. En la metodología propuesta, el problema multicriterio se resuelve seleccionando una 

combinación alternativa óptima de parámetros de proceso tecnológico AM para cumplir con los 

parámetros de calidad requeridos (objetivos deseados) de las partes aeroespaciales de acuerdo con varios 

criterios. Se desarrolló un algoritmo de decisión para la planificación de la fabricación aditiva para la 

construcción de la matriz de alternativas y la evaluación del coeficiente de adaptación. Como criterios de 

calidad en el modelo se eligieron precisión, rugosidad, resistencia, costo, tiempo de impresión. En base al 

análisis de los valores de los coeficientes de adaptación para las tecnologías SLM, DMD y EBM, se acepta 

como óptimo el primer tipo de tecnología para la fabricación de producto aeroespacial, la fusión selectiva 

por láser. 

 

Palabras claves: Partes aeroespaciales; Fabricación aditiva; parámetros de calidad; análisis de relaciones 

de Gray; Coeficiente de adaptación. 
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1. INTRODUCCIÓN 
 

The technological core of the Industry 4.0 concept is additive technologies that allow, based on material 

layer-by-layer deposition on a substrate and its melting and solidification according 3D model, to obtain 

finished products of various shapes and geometries configurations, with internal channels and cavities, the 

manufacture by traditional method is difficult or impossible (Bank et al., 2022; da Silva Oliveira et al., 

2022).  

 

The conventional manufacturing is characterized by high cost and cycle time, steps of technological 

processes that are connection with huge number of tools and equipment. Additive manufacturing present a 

significant cycle time and cost reduction, tool-less fabrication, capability for novel designs no limited by 

manufacturing constraints. 

 

Additive technologies are actively used in aviation and space industry, where complex geometry and high 

strength materials are main driver for engineering development (Alekseev et al., 2023; Dmitrienko et al., 

2023). The availability of additive technologies makes it possible to establish the production of aviation 

parts from titanium alloy, Ti-6Al-4V, with reducing the cost and production time. 

 

The main advantage of additive technologies in comparison with traditional, subtractive production 

methods are (Blakey-Milner et al., 2021): a significantly less time of the production cycle; the ability to 

make a “free” geometry form and configurations in design and technological preparation of production; 

lower costs for storage and transportation costs, equipment, tools; higher rate of material utilization; the 

possibility of obtaining products with gradient properties and chemical composition; minimization of the 

product mass; higher reliability of the design; and higher production flexibility, etc. However, additive 

technologies have the following disadvantages: the impossibility of achieving high accuracy; the need to 

improve the properties of the surface layer; insufficient quality of additive blanks that need the post-

processing and heat treatments procedures; insufficient automation of design and preparation of 

production; lack of a data base of optimal technological parameters for additive manufacturing different 

materials; and insufficiently developed system of suppliers of materials, etc. 

 

In this regard, the task of organizing additive production based on selective laser melting is to identify the 

area of their effective practical application in aviation, taking into account the limitations to provide 

improved functional properties of the product in a shorter production time and reduce consumed resources 

using numerical multi-parameter optimization tools. 

 

In this context, the functional properties of an aviation product include the parameters of strength, rigidity, 

weight, geometric complexity, the presence of internal channels and cavities, and the range of assembly 

units. 

 

Titanium alloy, Ti-6Al-4V, is an attractive, lightweight material for spacecraft structures, as it provides an 

excellent combination of high strength, low density, high modulus, low coefficient of thermal expansion, 

and higher operational temperature than aluminum alloys (Rawal et al., 2013). Additive manufacturing 

(AM) technology in case of selective laser melting (SLM) offers a unique approach to design and build 

complex shape aviation and space components without the need for tooling and with minimal machining 

at low scrap rates (Kulikov, Minakov, 2023). 

 

The main task of organizing additive manufacturing is to ensure the required quality and productivity in a 

given time, taking into account technological limitations and equipment capabilities. 

 

The main technological limitations are: 
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– The limitation of the building volume of printing, determined by the specification of equipment, which 

is most taken into account when choosing a technology for printing large-sized products; 

 

– The printing speed (scan speed), determined by the number of layers, therefore, the height of the product 

on the build platform, layer thickness, speed of application and alignment of powder layers, spraying and 

deposition of materials; 

 

– The thickness of the construction layer, determined by the resolution of the z axis and the size of the 

alloyed particles, the injection nozzle. 

 

In paper (Liu et al., 2021) directed energy deposition or direct metal deposition (DED, DMD) is observed 

as one of the additive manufacturing technologies, offers a high deposition rate, being suitable for 

fabricating large metallic components from titanium alloys. The development of high mechanical 

performance DED products is limited by time consuming searching for optimized processing parameters, 

such as laser power, scanning speed, spot size, and layer thickness. Therefore, a fast and cost-efficient way 

to discover new alloys and optimized processes for fabricating high-performance components is desired. 

Several investigators (Wooten, Dennies, 2008; Al-Bermani et al., 2010) are conducting studies to assess 

the build rate, surface quality, overall deposition accuracy, level of impurities, post-processing treatment 

such as hot isostatic processing, heat treatment, extent of machining, and cost, compared electron beam 

melting (EBM) process with conventional subtractive processes. EBM method is implemented in Boeing 

Aerospace during Ti-6Al-4V parts production using Arcam machines.  

 

In this paper, we developed the quality systems of additive technologies for aerospace parts manufacturing 

from Ti-6Al-4Al alloy metal powder based on Gray relation analysis and Isikawa diagram. The design of 

SLM technology is to create and develop a decision-making algorithm and evaluating its effectiveness. 

Decision-making is based on the results of studying the influence of technological parameters on the 

properties of manufactured parts by means of dispersion analysis, grey relational analysis, planning 

experiments (Yang et al., 2020). Thus, machine-learning technology is implemented based on 

mathematical models and parametric optimization to predict technological parameters that satisfy the 

mechanical properties of the aerospace product. 

 

Development of mathematical models that take into account all the physical features of the additive 

process for microstructure, mechanical and electrochemical properties prediction. The mathematical 

models allow producing the materials with requirement mechanical behavior. 

 

2. METHODOLOGY 
 

The proposed methodology is shown in Figure 1: variation (dispersion) analysis and regression model 

allow estimating the value of each technological parameter: laser power, layer thickness, scanning step, 

and their combination. An algorithm for parametric optimization is forming the set of optimal SLM 

parameters determined by the relationship of the influence of technological parameters on the properties 

of the product. 
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Figure 1. Methodology for the quality systems of additive technologies for aerospace parts manufacturing from Ti-

6Al-4Al alloy metal powder 

 

Unlike most conventional manufacturing processes, the repeatability of most metal AM processes cannot 

be taken for granted. Certain processes are particularly sensitive to material input and process variables 

which are hard to control. This is what reinforces the need for a robust quality strategy that addresses 

machines and materials. Processes which are able to directly measure and control the metal deposition 

(printing) process will have an advantage.   

 

Key features of materials produced by additive manufacturing are: 

 

– The fine microstructure, due to the very rapid solidification process 

 

– A slight anisotropy in Z direction, which induces slightly lower mechanical properties due to the 

superposition of layers.  

 

– Anisotropy can be avoided in X and Y directions by using an adapted laser strategy. 

 

– A few small residual porosities, in particular below the surface. However, densities of 99.9% are 

commonly reached with additive manufacturing processes. To achieve full density, post processing by 

HIP can be done, like for parts made by investment casting. 

 

Today research and development aimed at improving the AM process and enhances the performance 

properties of the aerospace parts produced. Next important step is the selection of the optimal 

technological parameters of AM types  and subsequent processing as by experimentation and 
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mathematical modeling techniques that will improve and accelerate the process of creating a product with 

the specified requirements, including the desired roughness of samples. 

 

Grey relational analysis (GRA) is a decision-making approach which has been derived from Deng's grey 

system theory which uses the terms black and white to denote systems with incomplete data and systems 

with complete data. The partial information is used to represent the grade of association between two 

sequences, a grey relation is utilized to characterize the distance between two components. Gradient 

augmentation compensates for a lack of statistical regression when the experiment is ambiguous or the 

experimental procedure is incorrect (Singh, Bharti, 2022).  

 

The main difficulty in solving problems of planning and quality optimizing additive manufacturing is the 

select and describe of suitable objective functions, since technological parameters and their relationships 

are extremely difficult to determine or express with exact mathematical models, especially for discrete 

variables. In addition, there are a large number of decision support methods for choosing a more optimal 

Pareto-Optimal-Front option. The application of different decision methods will lead to different decision 

results even for the same problem, which is likely to cause a different type of problem, stability or 

reliability, model adequacy. 

 

In proposed methodology the multicriteria problem (Fig. 2) is solved by choosing the optimal SLM 

strategy, parts location on the building platform (substrate) and technological parameters by implementing 

the vector of alternative technological process parameters combinations and required quality parameters 

(desired goals). The formation of alternatives is carried out on the basis of the knowledge base, 

respectively, each alternative is considered as a unit of knowledge, and the attributes of the alternatives are 

considered as elements of the knowledge vector. 

 

The required quality parameters (desired goals) of the aerospace part are: 

 

– material; 

 

– roughness, i.e. surface quality; 

 

– strength; 

 

– cost. 

 

The criteria for selecting alternative technological process parameters combinations are: 

 

– type of AM technology; 

 

– materials; 

 

– the size of the working area; 

 

– accuracy (distance between layers); 

 

– layer thickness (minimum layer thickness); 

 

– scanning speed; 

 

– cost. 
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Figure 2. Multicriteria decision problem of additive manufacturing planning 

 

The additive manufacturing process is represented as a vector of specified attributes to obtain the required 

product quality parameters (Russell et al., 2019; Global Aerospace Additive Manufacturing Market 

Research Report – Forecast 2016-2021, 2019): 

 

1. Attributes: accuracy (A), roughness (R), tensile strength (S), material cost (C), printing speed (B). 

 

2. Vector of technology type V= (A, R, S, C, B). 

 

The reference process or objective function is represented as: 

 

X0 = {x0(1), x0(2), … x0(n)},                                                             (1) 

 

where x0(n) are the attributes of the target vector. 

 

Variants of AM technological processes types (i = 1, 2, … m): 

 

 Хi = {хi(1), хi(2), … хi(m)},                                                             (2) 

 

where хi(m) are attributes of the alternative vector. 

 

Based on GRA the task is to determine the deviations of the value of each attribute in vector of attributes 

in relation on the value of quality parameters in objective function (target vector) and to determine the 

adaptation coefficient. 

 

D is the value of the deviation of the attribute of the alternative AM process Aa from the values of the 

attribute of the objective function Ag. The index of compliance of the alternative AM process with the 

required quality parameters - the adaptation coefficient, according to the formula: 

 

К𝑑 =
1

𝑒𝐷 =
1

𝑒|𝐴𝑎−𝐴𝑔/𝐴𝑔|
.                                                              (3) 

 

The value Aa ≠ Ag, if the values of the parameters in the alternative vector of the technological process Aa 

coincide with the values of the parameters in the target vector Ag, then the adaptation coefficient is 

 

К𝑑 =  
1

𝑒0 = 1.                                                                     (4) 
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Thus, we use a large number of attributes, and then the adaptation coefficient will take the form: 

 

К𝑑 =
1

𝑒∑ 𝜔𝑖𝐷𝑖
=

1

𝑒∑ 𝜔𝑖|𝐴𝑎−𝐴𝑔/𝐴𝑔| 
,                                                        (5) 

 

where ωi is the weight indicator of the attribute (degree of importance, priority). 

 

Decision algorithm for planning additive manufacturing: 

 

Step 1. Determining possible AM alternatives (additive manufacturing strategies) and establishing the 

required parameters - the objective function. 

 

Step 2. Description of alternatives and the objective function in the form of matrices and data arrays. 

 

Step 3. Building and processing of attribute matrices. 

 

Step 4. Normalization of attribute matrices and target vector. 

 

Step 5. Building a decision matrix. 

 

Step 6. Formation of a weighted normalized decision matrix. 

 

Step 7. Determination of the adaptation coefficient of each alternative. 

 

Step 8. Ranking adaptations and choosing the best one. 

 

In this case the quality systems of additive technologies for aerospace parts manufacturing is based on 

evaluating the adaptation coefficient of each AM technological alternatives: 

 

So, for example, we have m strategies or types of additive manufacturing – vectors of alternatives: X1, X2, 

… Xm, consisting of attribute values (xi(1), xi(2)… xi(n)), from which it is necessary to select the best in n 

criteria (attributes): C1, C2, …Cn. If the criteria Ci , i = 1,2, … n, consists of ni elements, then the 

alternatives matrix Xj, j = 1,2,…m, with respect to the criteria Ci can be represented: 

Xij = {xij(1), xij(2)… xij(ni)}, 

 

where xij (k), k = 1, 2, … ni, is the value of the attribute according to the selected criteria. 

 

In addition, each attribute is assigned a weight depending on the purpose and requirements for the part: Ω 

= [ω1, ω2, … ωn]. 

 

Generalized mathematical model of the quality systems of additive technologies for aerospace parts 

manufacturing: 

 

𝐾𝑗
𝑑 =

1

𝑒
∑ [𝜔 |(𝑥𝑖𝑗−𝑥𝑛

𝑜 )/𝑥𝑛
𝑜 |]𝑛

𝑖=1

→ 1; 𝑗 = 1, 𝑚,  𝑖 = 1, 𝑛.                                          (6) 

 

𝑋𝑜 =  {𝑥1
𝑜 … 𝑥𝑛

𝑜} ;                                                                  (7) 

 

𝑋𝑖𝑗 = ‖𝑥𝑖𝑗‖
𝑚×𝑛

;                                                                    (8) 

 

𝜔𝑖 = {𝜔1 … 𝜔𝑛};                                                                    (9) 
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∑ 𝜔𝑖
𝑛
𝑖=1 = 1;                                                                      (10) 

 

𝑥𝑚𝑖𝑛 𝑗 ≤ 𝑥𝑖𝑗 ≤ 𝑥𝑛
𝑜,                                                                 (11) 

 

𝑥𝑛
𝑜 ≤  𝑥𝑖𝑗 ≤ 𝑥𝑚𝑎𝑥𝑗,                                                                 (12) 

 

where 𝐾𝑗
𝑑 – the adaptation coefficient of j alternatives, 0 <  𝐾𝑗

𝑑 ≤ 1; j = 1…m - number of AM 

technology types; i = 1…n, number of technology type attributes; 𝜔𝑖  – weight value of the i-th attribute; 

𝑋𝑜array of the reference type of additive manufacturing (vector of objective function); 𝑋𝑖𝑗 – matrix of 

alternative types of additive manufacturing (alternatives matrix). 

 

To perform actions with arrays and matrices, we need to normalize them. There are several ways to 

normalize matrices. For the selected k-th element of the criteria Ci: 

 

Method 1: 𝑥𝑗𝑖(𝑘) =
𝑥𝑗𝑖(𝑘)

𝑀𝑖𝑘
,                                                        (13) 

 

where Мik – max {𝑥1𝑖(𝑘), … 𝑥𝑚𝑖(𝑘)}.                                             (14) 

 

Method 2: 𝑥𝑗𝑖(𝑘) =
𝑥𝑗𝑖(𝑘)

𝑚𝑖𝑘
,                                                       (15) 

 

where mik – min {𝑥1𝑖(𝑘), … 𝑥𝑚𝑖(𝑘)}.                                               (16) 

 

Method 3: 𝑥𝑗𝑖(𝑘) =
𝑥𝑗𝑖(𝑘)−𝐷𝑖𝑘

𝑀𝑖𝑘− 𝑚𝑖𝑘
.                                                (17) 

 

After normalizing the alternatives, matrix of different decisions (alternatives) are built: 

 

𝑋𝑗𝑖 = {𝑥𝑗𝑖(1)}, … 𝑥𝑗𝑖(𝑛𝑖)}.                                                          (18) 

 

Then we compare them with each other and with the objective function. In this case, the array of the 

objective function is determined by the set of optimal attribute values among all matrices for each element 

of the criteria: 

 

X0i = {(x0i(1), x0i(2)… x0i(ni)),                                                      (19) 

 

where X0i(k),k = 1,2.. n, is the optimal (best) value among 𝑥1𝑖(𝑘), 𝑥2𝑖(𝑘), … 𝑥𝑚𝑖(𝑘).    (20) 

 

Taking into account the values of the weights of each criteria, a weighted matrix of decisions (alternatives) 

and the objective function is constructed: 

 

𝜔𝑋𝑗𝑖 = {𝜔𝑛𝑖(1)𝑥𝑗𝑖(1)}, … 𝜔𝑛𝑖(𝑛)𝑥𝑗𝑖(𝑛𝑖)},                                        (21) 

 

𝜔𝑋0𝑖 = {𝜔𝑛𝑖(1)𝑥0𝑖(1)}, … 𝜔𝑛𝑖(𝑛)𝑥0𝑖(𝑛𝑖)},                                       (22) 

 

where ωni – weight ni Criteria. 

 

The incidence matrix (estimation matrix) and – the adaptation coefficient will take the form: 
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X = 

 𝑪𝟏  𝑪𝟐  𝑪𝒏

𝑿𝟏

𝑿𝟐

𝑿𝒎

[

𝒙𝟏𝟏 𝒙𝟏𝟐 𝒙𝟏𝒏

𝒙𝟐𝟏 𝒙𝟐𝟐 𝒙𝟐𝒏

𝒙𝒎𝟏 𝒙𝒎𝟐 𝒙𝒎𝒏

]

 

,                                                      (23) 

 

𝑲𝒋
𝒅 =

𝟏

𝒆
∑ [𝝎𝒊 |(𝒙𝒊𝒋−𝒙𝒏

𝒐)/𝒙𝒏
𝒐|]𝒏

𝒊=𝟏
 .                                                              (24) 

 

The optimal technological type (alternative) among a finite set of alternatives is the one that has the less 

deviation and the greatest similarity to the objective function. 

 

The adaptation coefficient allows to determine the degree of deviation of the values of the vector of 

alternatives from the target, taking into account the weighted values of the criteria for selecting 

alternatives, is within (0;1]. 

 

3. RESULTS 
 

The study considers the case of m = 3 (types of AM technologies), n = 5 (quality parameters): the 

following attributes are accepted as Criteria for substantiating the types of additive manufacturing:  

 

A - Accuracy, mm;  

 

R - Roughness, µm; 

 

S - Strength, MPa;  

 

С - Cost, rub.;  

 

B - Printing time, minutes. 

 

𝐾𝑗
𝑑 =

1

𝑒
∑ [𝜔𝑖 |(𝑥𝑖𝑗−𝑥𝑛

𝑜 )/𝑥𝑛
𝑜 |]5

𝑖=1

→ 1;  𝑗 = 1,3,  𝑖 = 1,5.                                          (25) 

 

𝑋𝑜 =  {𝐴𝑜, 𝑅𝑜, 𝑆𝑜, 𝐶𝑜 , 𝐵𝑜} ;                                                          (26) 

 

𝑋𝑖𝑗 = ‖

𝐴1

𝐴2

𝐴3

𝑅1

𝑅2

𝑅3

𝑆1

𝑆2

𝑆3

𝐶1

𝐶2

𝐶3

𝐵1

𝐵2

𝐵3

‖;                                                                  (27) 

 

𝜔𝑖 = {𝜔1, 𝜔2, 𝜔3, 𝜔4, 𝜔5};                                                            (28) 

 

∑ 𝜔𝑖
𝑛
𝑖=1 = 1;                                                                    (26) 

 

𝐴𝑚𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒 ≤  𝐴𝑚  ≤  𝐴𝑜                                                           (29) 

 

𝑅𝑚𝑖𝑛 𝑡𝑦𝑝𝑦  ≤ 𝑅𝑚 ≤ 𝑅𝑜                                                               (30) 

 

𝑆𝑜 ≤ 𝑆𝑚 ≤ 𝑆𝑚𝑎𝑥 𝑝𝑜𝑤𝑑𝑒𝑟                                                             (31) 

 

𝐶𝑚𝑖𝑛 𝑝𝑜𝑤𝑑𝑒𝑟 ≤ 𝐶𝑚 ≤ 𝐶𝑜                                                            (32) 
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𝐵𝑚𝑖𝑛 𝑚𝑎𝑐ℎ𝑖𝑛𝑒/𝑡𝑦𝑝𝑒 ≤ 𝐵𝑚 ≤ 𝐵𝑜                                                     (33) 

 

Vectors of alternatives for selective laser fusion (SLM), direct laser fusion (LMD/DMD), electron beam 

metal (EBM) are defined: 

 

XSLM = (A, R, S, C, B) = (0.04, 10, 700, 0.7, 3),                                      (34) 

 

XLMD = (A, R, S, C, B) = (0.1, 100, 610, 0.5, 10),                                     (35) 

 

XEBM = (A, R, S, C, B) = (0.2, 200, 580, 0.3, 125).                                    (36) 

 

Evaluation model: 

 

𝑋𝑜 =  {0.04, 10, 700, 0.3, 125},                                                (37) 

 

𝑋𝑖𝑗 =  ‖
0.04
0.1
0.2

 10
 100
 200

 700
 610
 580

 0.7
 0.5
 0.3

 3
 10

 125
‖,                                               (38) 

 

𝜔𝑖 = {0.4;  0.2;  0.1;  0.1; 0.2}.                                                 (39) 

 

Normalization of the matrix of alternatives was carried out according to the method: 

 

𝑥𝑗𝑖(𝑘) =
𝑥𝑗𝑖(𝑘)

𝑀记𝑘
, where Мik – max {𝑥1𝑖(𝑘), … 𝑥𝑚𝑖(𝑘)}.                            (40) 

 

Normalized matrix 𝑋𝑖𝑗 = ‖𝑥𝑖𝑗‖
𝑚×𝑛

- decision matrix: 

 

𝑋𝑖𝑗 = [
0.2
0.5
1.0

 0.05
 0.5
 1.0

 1.0
 0.87
 0.83

 1.0
 0.71
 0.43

 0.02
 0.08
 1.0

]

 

.                                            (41) 

 

Normalized array 𝑋𝑜:  

 

𝑋𝑜 =  [0.2 0.05 1.0 0.43 1.0]                                            (42) 

 

К𝑑1 =  
1

𝑒
|0.4(

|0.2−0.2|
0.2

)+0.2(
|0.05−0.05|

0.05
)+0.1(

|1−1|
1

)+0.1(
|1−0.43|

0.43
)+0.2(

|0.02−1|
1

)|
= 0,1.                        (43) 

 

К𝑑2 =  
1

𝑒
|0.4(

|0.5−0.2|
0.2

)+0.2(
|0.5−0.05|

0.05
)+0.1(

|0.87−1|
1

)+0.1(
|0.71−0.43|

0.43
)+0.2(

|0.08−1|
1

)|
= 0,001.              (44) 

 

К𝑑3 =  
1

𝑒
|0.4(

|1−0.2|
0.2

)+0.2(
|1−0.05|

0.05
)+0.1(

|0.83−1|
1

)+0.1(
|0.43−0.43|

0.43
)+0.2(

|1−1|
1

)|
= 0,00001,                 (45) 

 

К𝑑3 < К𝑑2 < К𝑑1 < 1.                                                       (46) 

 

Based on the analysis of the values of the adaptation coefficients, the first type of technology for the 

manufacture of aerospace product, selective laser melting, is accepted as optimal. 
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To verify the adaptation coefficient with the gray relational coefficient 𝜀𝑗𝑖 , the calculation of last was 

performed:  

 

𝜀𝑗𝑖 =
𝑚𝑖𝑛𝑚𝑚𝑖𝑛𝑛𝑖 |𝜔𝑛𝑖𝑥𝑜𝑖(𝑛𝑖)−𝜔𝑛𝑖𝑥𝑚𝑖(𝑛𝑖)|+0.5 𝑚𝑎𝑥𝑚𝑚𝑎𝑥𝑛𝑖 |𝜔𝑛𝑖𝑥𝑜𝑖(𝑛𝑖)−𝜔𝑛𝑖𝑥𝑚𝑖(𝑛𝑖)|

|𝜔𝑛𝑖𝑥𝑜𝑖(𝑘)−𝜔𝑛𝑖𝑥𝑗𝑖(𝑘)|+0.5 𝑚𝑎𝑥𝑚𝑚𝑎𝑥𝑛𝑖 |𝜔𝑛𝑖𝑥𝑜𝑖(𝑛𝑖)−𝜔𝑛𝑖𝑥𝑚𝑖(𝑛𝑖)|
                      (47) 

 

 

From the analysis of the distribution graphs of values (Fig.3), it can be seen that the values of the 

adaptation coefficients for various alternatives are within (0; 1], and the nature of the distribution is 

comparable to the distribution of the values of the gray relational coefficient. Due to the homogeneity of 

the behavior of the distribution graphs of the values of the gray relational coefficient and the coefficient 

adaptation in the calculation of determining the type of additive manufacturing, the adaptation coefficient 

is taken, since the time of its determination is much less than the time of calculation of the gray relational 

coefficient. 

 

 
Figure 3. Graph of the distribution of gray relational coefficient and adaptation coefficient values 

 

SLM as laser powder bed fusion AM type allows to produce fully dense aerospace components with high 

precision in a relatively short time, the manufacturing process is relatively expensive and is only 

applicable in industries with high-value components and where higher performance can result in cost 

reduction (Angrish, 2014). Aerospace industry applications are particularly well explored due to the 

reduced fuel costs achieved through mass reduction on aircraft and spacecraft. Additive manufacturing 

techniques have been shown to help reduce cost and lead times and also for reducing the mass of 

components aboard spacecraft and aircraft. Many popular publicized examples of AM applications in 

aerospace boast mass reductions, among many other benefits (Petrenko et al., 2023). While this is an 

attribute that holds much promise, lightweighting is currently still not the primary driver for AM in 

aerospace (Martirosyan et al., 2022). Lead time reduction is currently the main benefit, which can be 

significant for complex aerospace components often taking months or years of (traditional) fabrication 

time for complex systems). 

 

4. CONCLUSIONES 
 

Additive digital technologies refer to global science smart production and are included in the core of the 

fourth-technological revolution. It mean that this type of technologies must meet to advanced quality 

requirements of aerospace products.  
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This work considers the issues of operational planning of additive manufacturing. The adaptation 

coefficient makes it possible to determine the rational type of additive manufacturing at the pre-production 

stage, when the calculation by traditional methods (GRA) is very laborious. The coefficient used in the 

quality model characterizes the organizational and technical potential of additive manufacturing and 

contains the characteristics of the powder material, parts specifications, equipment and process 

parameters, and the values of the parameters of quality: accuracy, surface characteristics and strength of 

aerospace products. 

 

The additive manufacturing processes (SLM, DMD, and EBM) were represented as vectors of specified 

attributes to obtain the required product quality parameters, were built a target vector and alternative 

vectors in order to determine the adaptation coefficient for each AM technology types. 
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