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ABSTRACT 

 
ASTER sensor data is among the most potent satellite data accessible for doing geological investigations, 

with images for the whole earth's surface. In order to test the capability of this sensor to detect places with 

geochemical alterations, photographs of Mount Seiver Daghi in the western Iranian province of Samal were 

utilized in this study. This region, which comprises of magmatic and volcanic terrain, is part of the Arsbaran 

territory and is covered by intrusive masses with alluvial and sedimentary deposits. To conduct this study, 

an ASTER measuring frame was utilized, which, after performing atmospheric corrections using the internal 

average relative reflectance (IARR) method of false color composite images and principal component 

analysis (PCA), was able to differentiate between different lithological units using the Band assignment 

method, full-pixel methods of spectral angle mapper (SAM) and base spectrum algorithm of spectral  feature 

fitting (SFF) as well as sub-pixel methods of matched filtering. The study demonstrates that the approach 

of principal component analysis and false color composition is efficient for distinguishing sedimentary rock 

units from igneous rock units, and its application is suggested for the designated rock units. Due to the lack 

of spectral characteristics of feldspars and quartz in the short infrared wavelength range, the basic spectrum 

methods utilized in this work are incapable of identifying such minerals. It is not advised to use these 

algorithms to distinguish between various magmatic units. 

 

Keywords: Geochemical alteration detection, full-pixel and sub-pixel mapping, spectral angle mapper 

method, matching filter algorithm and pure endmember  

 

RESUMEN 
 

Los datos del sensor ASTER se encuentran entre los datos satelitales más potentes accesibles para realizar 

investigaciones geológicas, con imágenes de toda la superficie de la tierra. Para probar la capacidad de este 

sensor para detectar lugares con alteraciones geoquímicas, en este estudio se utilizaron fotografías del monte 
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Seiver Daghi en la provincia iraní occidental de Samal. Esta región, que comprende terreno magmático y 

volcánico, es parte del territorio de Arsbaran y está cubierta por masas intrusivas con depósitos aluviales y 

sedimentarios. Para realizar este estudio se utilizó un marco de medición ASTER, el cual, luego de realizar 

correcciones atmosféricas mediante el método de reflectancia relativa promedio interna (IARR) de imágenes 

compuestas de falso color y análisis de componentes principales (PCA), fue capaz de diferenciar entre 

diferentes unidades litológicas utilizando el método de asignación de banda, los métodos de píxel completo 

del mapeador de ángulo espectral (SAM) y el algoritmo de espectro base de ajuste de características 

espectrales (SFF), así como los métodos de subpíxel de filtrado adaptado. El estudio demuestra que el 

enfoque del análisis de componentes principales y la composición de colores falsos es eficiente para 

distinguir las unidades de roca sedimentaria de las unidades de roca ígnea, y se sugiere su aplicación para 

las unidades de roca designadas. Debido a la falta de características espectrales de los feldespatos y el cuarzo 

en el rango de longitud de onda del infrarrojo corto, los métodos de espectro básicos utilizados en este 

trabajo son incapaces de identificar dichos minerales. No se recomienda utilizar estos algoritmos para 

distinguir entre varias unidades magmáticas. 

 

Palabras clave: Detección de alteraciones geoquímicas, mapeo de píxeles completos y subpíxeles, método 

de mapeo de ángulo espectral, algoritmo de filtro coincidente y miembro final puro 

 

1. INTRODUCTION 
 

The ASTER sensor is one of the instruments installed on the 2000-launched Tera satellite, which captures 

multispectral data in 14 bands. This sensor has 5 bands in the mid-infrared area of the electromagnetic 

spectrum (8-14 m) and 9 bands in the SWIR range (1.4-2.5 m), which are mostly used to detect carbonate 

and clay minerals (Rockwell and Hofstra 2008). The Anjard region, which is part of Iran's Arsbaran zone, 

consists primarily of volcanic and magmatic rocks that have merged with sedimentary rocks. Due to the 

boiling of the region's magmatic effluents, mineralization has occurred in some locations. Since the 

spectrum properties of minerals in igneous rocks are similar to one another, ASTER gauge data have not 

been frequently employed for mapping igneous terrains. In this study, an attempt was made to map the 

examined area utilizing a combination of techniques, including the pixel purity index, spectral angle mapper, 

and band ratios. 

 

2. GEOLOGY 
 

The researched area is located 25 to 70 kilometers northwest of Ahar city in the province of East Azerbaijan. 

The examined area encompasses around 170 square kilometers and includes a portion of the Arsbaran region 

and the Alborz magmatic zone with undulating topography (Alavi, 2018; Yazdi et al. 2022). Granites, 

monzogranites, and other igneous and volcanic rocks cover around fifty percent of the region. Multiple 

periods of igneous and volcanic activity led to the production of many intrusions, volcanic rocks, and tuffs 

in the region from the Late Eocene to Oligocene (Agard et al. 2011). In this region, magmatism has caused 

contact metamorphism, metasomatism, and the creation of copper porphyry deposits and metamorphic rocks 

like hornfels (Bazin and Habner, 1969). 

 

The sedimentary rocks of the study region are predominantly Cretaceous in age, with greater concentrations 

in the north and south. With a height of 2,640 meters, the highest mountain of the examined region 

corresponds to the Shiver Daghi intrusive mass, which intruded the Cretaceous sedimentary and volcanic 

rocks. In contact with the intrusive mass are observed skarn masses, silicification, recrystallization, and 

hornfels (Malai, 1993; Yazdi et al. 2019). In the southern portion of the region, the terrain is quite flat and 

there are significant Neogene alluvial sediments (Kansaran, 2018; Yazdi et al. 2016). Following is a concise 

explanation of the lithology of the rock units in the research region. 
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Cretaceous sedimentary rocks are more prevalent in the northern and southern portions of the study region. 

With a height of 2,640 meters, the tallest mountain of the examined region belongs to the Sivar Daghi 

intrusive mass, which has penetrated the volcanic rocks and Cretaceous deposits. In contact with the 

intrusion, masses of skarn, silicification, recrystallization, and hornfelses are detected (Malai, 1993; Naeemi 

et al. 2022). In the southern portion of the region, the terrain is generally flat and rich in Neogene 

sedimentary and alluvial deposits (Kansaran, 1368; Bazoobandi et al. 2015; Gharib-Gorgani et al. 2017; 

Bina et al. 2020). Following is a concise explanation of the lithology of the rock units in the research region. 

The observable rock units in the research region consist of sedimentary rocks, volcanic rocks, volcanic 

debris, and igneous and volcanic rocks. On the geological map of the region, sedimentary rocks are 

designated with symbols such as Kl1, Kl,sh, Ksh, and Ks,sh based on the ratio of sedimentary to volcanic 

components. Kst, Kv, Kt,sh, Eag, and Plla (volcanic clastic rocks) and Ktc, Kan, Kta, Kda, Kvr, Emp, Qtb, 

Qan, and Qb (volcanic clastic rocks) (volcanic rocks). 

Kl1 is constituted primarily of limestone, whereas Kl,sh, Ksh, Ks, and Ks,sh are made up of shale, sandstone, 

and trace amounts of limestone. Minor metamorphism has largely changed the Ksh sedimentary block into 

hornfelses and silicified schists. Many sedimentary rock units contain a large quantity of volcanic material 

and tuff in addition to pure rock. In addition to limestone and sandstone, conglomerates and river 

consolidation deposits such as Ksh,t, PlQc, Qt1 and PlQc include considerable amounts of volcanic elements 

and andositic tuffs. The riverbeds of Qt2, Qf, Qsc, Qdf, Qds, and Qc and Qal consist of older volcanic rocks. 

In the examined area, age distinctions across lithological units are uncommon. Nonetheless, a quick 

overview of the lithological units follows. 

Ksh,t is composed of shale, agglomerate, tuff, and intermediate volcanic rocks such as andesite and dacite. 

In the Ksh,t unit, contact metamorphism caused by the incursion of Shiver Daghi has resulted to the creation 

of hornfels. Ktc consists of trachyandesite and latite that has undergone epidoteization. 

Kan consists of basalt and andesite basalt in which the plagioclase minerals have been replaced by clay 

minerals, chlorite, carbonate minerals, and iron oxides. 

Dacite, trachyandesite, latite, and andesite make up Kda and Ev. Kvr is composed of rhyolite, dacite, and 

acidic tuff, together with feldspars and ferromagnesian minerals that have been transformed into cercite and 

iron oxide. Qtb Qan and Qb consist of black basalt and trachy basalt with plagioclase and pyroxene 

phenocrysts. Emp is formed of latite that has been severely sericiticized. Kst, Kv, Kt, and sh are made of a 

mixture of tuff, shale, and sandstone. Eag consists of andesitic volcanic rocks and agglomerates that have 

been significantly changed. Plla is a lahar deposit composed of andesite and dacite with shards of siliceous 

rock. 

The area has quartz monzonite and quartz-monzodiorite intrusive Shir Daghi masses (qmz-mzd). The 

intrusive mass demonstrates that ferromagnesium minerals and heterogeneity can be separated 

geographically. This intrusive material is oxidizing and contains magnetite formed by magma. Amphibole 

and biotite are ferromagnesium minerals. As a result of alteration, there are traces of epidote, chlorite, and 

sericite. At the contact point of the intrusive mass and primarily limestone units at the northernmost contact 

point with the intrusive mass, a tiny copper deposit forms (Anjard copper deposit). This region also contains 

quartz monzonite (d-qmd), granite (g), granodiorite (md-gb), and sinogabbro (sn-gb) (Moorhouse, 1985, 

Spear, 1993; Moghadam et al. 2021). 

At the contact point with the Shir Daghi intrusive unit, Hornfels rock units (hp) consist of biotite, andalusite, 

cordierite, feldspar, and sillimanite (Mojran Alban Abad, 1382; Moinevaziri and Azizi 2023; Jalali Nezhad 

et al. 2023). Typically, metamorphism occurs at the mass-contact point in metabasites. In calc-silicate rocks, 
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epidote, tremolite, alkali feldspar, phlogopite garnet, and clinopyroxene are more prevalent (Mojran Alban 

Abad, 2012; Safari et al. 2022; Pirmohammadi Alishah 2023; Ashrafi et al. 2023). Skarn (sk) (sk) It is 

composed of garnet, pyroxene, actinolite, scapolite, and epidote, with minor sulfide and oxide minerals and 

highly abundant carbonate minerals at the point of contact with the Shir Daghi intrusive unit (Hoseinzadeh, 

2018; Seyyedi et al. 2022; Rahimzadeh et al. 2022). The composition of the hal rock unit is epidote, albite, 

actinolite, and calcite. It contains quartz, chlorite, and garnet. This unit of rock is black in hue. In the form 

of plagioclase transformed into clay minerals and amphibole, one may observe the remnants of the principal 

minerals. In the form of malachite, there are traces of copper mineralization. Lithographic map Figure 1 

depicts the simplified research region. 

 

 

Fig. 1. A lithological map of the area under examination. L1: igneous and magmatic intrusive rocks, L2: 

volcanic rocks, L3: tuff and volcanoclastics, L4: shale, L5: sandstones, L6: limestone, L7: metamorphic 

rocks, L8: conglomerate, L9: alluvium 

 

 

3. CORRECTIONS OF THE ATMOSPHERE AND IMAGE PROCESSING 
 

Three VNIR spectral bands and six SWIR spectral bands of the ASTER sensor are superimposed for image 

processing, resulting in a spatial resolution of 15 meters for bands 1 through 3 of the ASTER sensor. 

Before inputting satellite photos into spectral identification methods, atmospheric influences are frequently 

adjusted (Bernstein et al. 2012; Richter and Schlapfer 2013). Cruz's internal average relative reflectance 

(IARR) approach was used to adjust the image for atmospheric conditions (1988). IARR is a method (Kruse, 

1988) that does not require data on atmospheric conditions and instead uses image band data. The IARR 

method can be utilized in locations with little vegetation cover and in the absence of atmospheric data 

necessary for accurate atmospheric correction via radiative transfer algorithms (RSI 2004; Gao et al. 2009). 
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Several studies of arid and semiarid environments have previously employed this technique with success 

(Kruse 1988; Ben-Dor and Kruse 1994; Rasouli Beirami and Tangestani 2020). In the IARR calibration, 

each pixel's brightness is normalized by the spectral band's mean radiance (Kruse 1988). The reflectance 

values obtained by IARR are relative reflectance and cannot be compared directly to the laboratory spectra 

of the materials. However, the IARR method's image reveals the form of the absorption features (Kruse 

1988). PCA operates by computing the correlation coefficient between pixels and rearranging the original 

space vectors so that they coincide with the direction of greatest data alteration. 

 

4. PRINCIPAL COMPONENT ANALYSIS 
 

Principal component analysis (PCA) is a statistical technique for reducing the dimensionality of remote 

sensing data by translating it into a new orthogonal space (Yamaguchi and Naito 2003; Rajendran et al. 

2011; Asadzadeh and de Souza Filho 2016). Consequently, the most significant changes in the spectral 

features of the picture pixels are readily apparent in PCA images. PCA operates by determining the 

correlation coefficient between pixels and rotating the principal space vectors to coincide with the direction 

of greatest data variance (Crosta and McMoore 1989). False color composites of PCA bands are frequently 

employed to differentiate between lithologies (Tangestani et al. 2008; Rajendran et al. 2011). 

 

Purification of spectrum Due to the existence of a variety of materials with distinct spectra, minerals with 

varying grain sizes, and residual air absorption characteristics, the spectral shapes of the ASTER 

spectrometer image change from the laboratory spectrum. Even when converted to the standard bands of 

the ASTER analyzer, laboratory spectra cannot be used as a standard for picture categorization and detection 

of target chemicals. Therefore, in order to improve the performance of mapping algorithms, it is essential 

to select the image's cleanest spectrum (Boardman, et al. 1995). Pixel Purity Index (PPI) is one of the most 

efficient ways for getting pure spectra from an image (Boardman, et al. 1995). The pixel purity index 

algorithm translates pixel spectra onto a space-selected random vector and then counts the number of times 

each pixel appears at the end of the random vector. The pixels with the highest frequency of appearance at 

the end of the random vectors are chosen to have the clearest spectrum. To lessen the impact of noise on 

pixel representation, the pixel purity index approach employs normalized (MNF) noise pictures (Rowan and 

Mars 2003; RSI 2004). MNF images are comparable to PCA images with the exception that the image is 

changed by choosing the principal space vectors with the highest signal-to-noise ratio (Rajendran et al. 

2013). 

 

5. BAND RATIOS AND IMAGE HIGHLIGHTS 
 

Band ratios of ASTER spectrometer pictures have been utilized successfully and extensively to describe 

spectral composition alterations by reducing albedo effects caused by changes in terrain slope, illumination 

circumstances, and grain size (Rowan and Mars 2003; Rowan, Mars, and Simpson 2005). Band ratios are 

so sensitive to spectral alterations that they may discriminate between dolomite and calcite (Rasouli Beirami 

and Tangestani 2020). Due to the fact that band ratios are insensitive to optical conditions, they can be 

utilized without difficulty for lithology mapping in an IAR-calibrated image (Kruse 1988; Rowan, Mars, 

and Simpson 2005). (Crowley et al. 1989; Crowley, 1993; Rowan, Mars, and Simpson, 2005; Rasouli 

Beirami and Tangestani, 2020) 

 

6. SPECTRAL ANGLE MAPPING DEVICE 
 

The Spectral Angle Mapper (SAM) technique gives a measure of similarity between a reference spectrum 

and an unknown spectrum by calculating the angle between two spectra under the assumption that both are 

vector values in an n-dimensional space (Kruse et al. 1993). The output of the SAM algorithm is an image 

displaying the spectral angle between the reference spectrum and the picture's pixel spectrum. Pixels with 

smaller divergence angles, or darker pixels, correlate to a greater number of reference spectra. Due to the 
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fact that the SAM algorithm is insensitive to image lighting conditions (Kruse et al., 1993), it can be applied 

to IAR images. 

 

7. COMPLIANCE WITH SPECTRAL IMAGING STANDARDS (SFF) 
 

The algorithm for spectral image matching uses the least squares method to compare image spectra with 

reference spectra. This approach adapts the pixel and target spectra by analyzing particular absorption 

patterns in the spectra. In this procedure, the continuum is first eliminated from the image and reference 

spectra, and then the image spectrum is compared to the reference spectrum using the deep least squares 

methodology and the shape of the spectral pictures. The outputs of each reference spectrum are represented 

by a scale image and either a root mean square error image or an adaptation image in this algorithm. Brighter 

pixels in the scale image indicate a closer match to the reference material. The black pixels in the root mean 

square error image indicate a reduced mistake, and when combined with the results of the scale image, they 

can be used to locate the areas that match the reference spectrum using a two-dimensional scatter diagram. 

 

8. COMPATIBLE FILTERING 
 

Matched filtering (MF) is a spectral separation technique that identifies the endmembers of defined 

abundance spectra by employing a partial separation technique. Boardman, Cruz, and Green were the 

originators of the MF technique (1995). The primary advantage of the MF approach is that it is not necessary 

to know all the image's end members. The MF technique maximizes the endmember reaction while 

removing the background effect. The probability of a match between a pixel's spectrum and the spectrum 

of the target material increases as the output of the MF technique for that pixel increases. 

 

9. DIVERGENCE OF SPECTRA INFORMATION (SID) 

 
The spectral information divergence classification method is a spectral classification approach that use the 

size of the divergence to match pixels to the relevant spectrum. In this strategy, the pixels are more likely 

to be comparable the lesser the divergence. Also, pixels over the maximum threshold for divergence are not 

categorized. 

 

10. DISCUSSION 

 
10-1. mineral spectral characteristic 

Feldspars 

 

Due to doubly positive iron oxides, the visible and near-infrared (0.35–2.50 m) spectral characteristics of 

feldspars are characterized by diffuse absorption features in the wavelength range of approximately 1.1–1.3 

m. If water is incorporated into its structure, there may also be water absorption. The absorption wavelength 

becomes twice as positive as the iron level increases. The absorption bands that correspond to the highest 

level of doubly positive iron (over 0.5wt%) are the deepest. Fe content increases twofold as anorthite content 

increases up to An65. Plagioclase shows no spectral characteristics in the 2.1–2.5 m wavelength range, with 

the exception of diffuse absorption in the 1.1–1.3 m wavelength region. Reflectance is relatively strong at 

visible spectrum wavelengths. The band ratio (b2+b3)/(b7+b8) can be utilized to calculate the ratio of 

plagioclase to ferromagnesium minerals (Adams and Goullud 1978; Crown and Pieters 1987). 

 

Olivine, epidote, chlorite, and pyroxene 

Both ferric iron (double positive) and iron in minerals induce considerable absorption between 0.8 and 2.4 

micrometers in wavelength. Frequently, ferric minerals exhibit absorption about 0.9 m. (Hunt 1977; Horgan 
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et al. 2014). Iron's strongest absorption band ranges between 0.9 and 1.4 m, typically between 1.0 and 1.1 

m. Numerous iron-containing minerals, such as pyroxenes, also exhibit a second absorption band, which is 

typically near 2 m, but can range between 1.8 and 2.4 m. The absorption bands of orthopyroxene are 

relatively narrow about 0.9 m and rather large around 1.9 m. Clinopyroxenes with high and low calcium 

behave differently. Certain clinopyroxenes exhibit a narrow, symmetrical absorption band centered around 

1.05 m and a large absorption band centered about 2.20 m. Other kinds of clinopyroxene may exhibit a 

complicated absorption band about 1.0 m as opposed to 2.0 m. (Horgan et al., 2014) The 1.0 m band is 

actually composed of two or three distinct bands centered at 0.94, 1.03, and 1.15 m. (Figure 2). 

Olivine has a large, asymmetric absorption band centered at 1.05 m, but none at 2.0 m. The 1.0 m band 

consists of three bands with centers near 0.85, 1.05, and 1.15 m. (Horgan et al. 2014). Other iron-bearing 

minerals, including iron oxides, iron-bearing clay minerals, and iron sulfates, typically exhibit absorption 

bands between 0.9 and 1.1 m. (Horgan et al. 2014). Strong absorption of ferric iron (Fe+3) occurs at a 

wavelength of around 0.45 micrometers, which corresponds to the band of an ASTER detector. Epidote, 

chlorite, and other ferromagnesium minerals containing hydroxyl groups exhibit high absorption for F-OH 

vibrations between 2.20 and 2.30 micrometers in wavelength, which corresponds to bands 8 and 7 of the 

ASTER meter (Clark et al. 1990). 

 

Quartz 

 

Quartz lacks unique absorption characteristics in the SWIR spectral band. Consequently, multispectral 

thermal infrared (TIR) data from ASTER spectrometers are indispensable for detecting non-hydrous forms 

of quartz (Rockwell and Hofstra 2008). This corresponds to band 11 of the ASTER gauge, which permits 

mapping of acidic and igneous volcanic rocks (Rockwell and Hofstra, 2008; Rajendran et al., 2011). The 

spatial resolution of the ASTER meter's thermal infrared data is 90 meters, therefore thermal bands cannot 

be used to successfully identify siliceous rocks (Rasouli Beirami and Tangestani 2020). Due to hydroxyl 

vibrations, a variety of hydrous quartz in silicate minerals may exhibit absorption in band 4 of the ASTER 

gauge (Rajendran and Nasir 2014). 

 

Carbonate minerals 

 

Carbonate rocks consist primarily of calcite and dolomite. Dolomite and calcite possess distinctive spectral 

properties ((Hunt et al. 1972; Hunt 1977; Rasouli Beirami and Tangestani 2020)). The absorption band of 

calcite at 2.35 m corresponds to band 8 on the ASTER meter, whereas the absorption band of dolomite at 

2.33 m corresponds to band 7 (Zaini et al. 2014)). Calcite and dolomite can be separated and recognized 

based on the difference in wavelength absorption between 2.33 and 2.45 m. (Rowan and Mars 2003). In the 

thermal infrared range, calcite and dolomite exhibit considerable absorption at wavelengths of 11.40 and 

11.35 micrometers, respectively (Rockwell and Hofstra 2008). (Rajendran et al. 2011). Dolomite and calcite 

can be recognized using the ASTER meter band ratio b8/b7 (Rasouli Beirami and Tangestani, 2020). (Figure 

2). 
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Fig. 2. The spectrum of rich minerals and rocks in igneous and sedimentary environments is depicted in 

Figure 2. 1. amphibole, 2. olivine, 3. illite, 4. quartzite, 5. feldspar, 6. limestone, 7. sandstone, 8. illite 

shale, 9. granodiorite, 10. diorite, 11. rhyolite, 12. basalt Andesite, 13. Quartz monzonite, 14. Quartz 

monzonite, Nepheline syenite and Nepheline, 16. Weathered basalt, 17. Pyroxene basalt, 18. Fresh basalt, 

19. 20. Chlorite, 21. Kaolinite, 22. Epidote 

 

Fig. 3. Spectra derived from IAR image, 1: dark igneous/volcanic rocks with increased pyroxene content, 

2 and 3: sediments, 4: igneous/volcanic rocks, 5: severely changed rocks with ferric iron absorption. 

 

Clay sediments 
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Clay minerals, including kaolinite and mica, exhibit Al-OH absorption characteristics near wavelengths of 

2.10 to 2.20 m. Additionally, the hydroxyl group shows a twofold absorption at approximately 1,4 m. Illite 

and muscovite contain extra absorption bands between 2.35 and 2.40 microns. Mg-OH absorbs light at a 

wavelength of approximately 2.30 microns (Clark et al. 1990). Therefore, these hydroxyl absorption 

characteristics can be recognized using the ASTER probe's band 6 (Figure 2). 

 

10-2. PCA image (principal component analysis) 

 

Since vegetation is regarded as a destructive spectral element in PCA transformation (Grebby et al., 2014), 

the vegetated and cultivated parts of the image were masked with an NDVI mask. Figure 4 depicts the 

composite fake color image formed by assigning PCA b1,b2,b3 to RGB. The majority of sedimentary and 

alluvial rocks are depicted in green, while the majority of igneous and volcanic rocks are depicted in red. 

Numerous regions covered by black basalts (Qp) are depicted in red. There are, however, a few exceptions. 

Red indicates sedimentary units such as shale, represented by Ksh,t. Some volcanic and igneous rocks, 

marked by r01, r02, and r03, are depicted in green. The findings of PCA indicate that the spectral differences 

between the various rock units in the region are somewhat minor. Aside from that, the PCA image reveals 

glaring disparities between several lithological units. PCA imaging is frequently utilized to reveal these 

distinctions ((Rajendran et al., 2011)). 

 

 

Fig. 4. depicts the creation of a false color composition from a PCA picture by assigning PC1, PC2, and 

PC3 to an RGB color image. High PC1 levels cause dark basalts and pyroxene basalts to appear mostly 

red. Monzonites (mz) and hot milk quartz monzonite (qmz-mzd) are red or crimson-blue in color. Some 

shale and sedimentary rocks (Ksh,t) are blue or reddish blue, but most sedimentary rocks and alluviums 

are green. The vegetation is depicted in black. 

 

10-3. False color chemicals and ASTER meter band ratio depictions 

 

For mapping metasediments and volcanoes, several band ratios of ASTER spectrometer images in the form 

of fake color composites (FCC) have been proposed. A color composition composed of the band ratios 

b5/b3 and b1/b2 expresses the spectral slope generated by the combined effect of iron absorption in the 

VNIR portion of the spectrum and the absence of Al-OH absorption in band 5. As RGB color pictures, false 

color combinations consisting of b4/b7, b3/b4, and b2/b1 are employed to distinguish volcanic rocks from 

sedimentary rocks (Abdeen et al. 2001). Band ratios b7/b6, b6/b5, and b6/b4 are utilized as RGB color 
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images to map gneiss domes and granites (Wolters et al., 2005), whereas band ratios b8/b5, b5/b4, and b7/b8 

are used as RGB color images to detect alkaline granites (Madani and Emam 2009). 

 

Vegetation is a significant source of error in satellite image lithology mapping. Vegetation can obfuscate 

the spectral features of a rock layer, preventing the identification of rock lithology. This is especially severe 

and problematic on the surfaces of some igneous rocks made of low-albedo materials (Grebby et al. 2014). 

In different periods of youth and senescence, vegetation can exhibit distinct spectral properties (Baldridge 

et al. 2009). Therefore, green and dry vegetation can react differently and simulate the spectral properties 

of various rocks and minerals (Grebby et al. 2014; Rasouli Beirami and Tangestani 2020). The Normalized 

Difference Vegetation Index (NDVI) is defined as (b3-b2)/(b3+b2) (Bertoldi et al. 2011; Meer et al. The 

lowest threshold in the NDVI image was chosen to cover the plant cover in the northwestern portion of the 

research area, where the vegetation cover is extremely dense. 

The form of the rock spectra in the VNIR region of the spectrum is often impacted by the absorption intensity 

of ferric iron and iron (Rowan, Mars, and Simpson 2005). (Rowan, Mars, and Simpson 2005). Iron-ferric 

adsorption decreases band 1 reflectance. Fe has a greater b1/b2 ratio because its absorption in band 1 is not 

as intense. 

(b7 + b9) / (b8 + b8) is sensitive to the adsorption of Fe-OH and Mg-OH in epidote, chlorite, and other 

ferromnesian minerals in the research area (Dalton et al. 2004; Rasouli Beirami and Tangestani 2020) 

Consequently, it is common knowledge that Fe-OH, Mg-OH, and CO3 absorption features cannot be 

separated based on relative band depth estimations alone ((Rowan and Mars 2003; Dalton et al. 2004)). In 

order to distinguish carbonate rocks from igneous rocks, albedo must also be considered. The albedo of 

carbonate rocks is typically greater than that of volcanic rocks and other types of igneous rocks ((Rasouli 

Birami and Tangestani 2020)). 

 

 
 

Fig. 5. False color combination (FCC) b4/b7, b3/b4, and b2/b1 are depicted in Figure 5. The majority of 

sedimentary rocks are light green in color, with the exception of shale (Ksh,t) and limestone, which are 

blue or reddish blue. Quartz monzonite (qmz-mzd) and monzonite (mz), as well as other intrusive and 

volcanic rocks, are blue, bluish-red, or red. The vegetation is depicted in black. 
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Figure 5 depicts a composite image using the band ratios b4/b7, b3/b4, and b2/b1 for an RGB color image. 

Zero-based digital numbers were allocated to vegetation in order to highlight the color diversity of the rock 

units in question. As illustrated, volcanic and igneous rocks are colored red, pink, or blue. Sedimentary 

lands, in comparison, appear greener in the image. The FCC and PCA images are comparable. This 

demonstrates that the PCA image reflects the alterations in spectral characteristics in this false color mixture. 

In the figure, volcanic and igneous rocks have high ratios of 7.4 and 1.2 and low b3/b4 ratios compared to 

sedimentary terranes, which have mostly high b3/b4 ratios. Consequently, sedimentary rocks can be 

separated from volcanic and igneous rocks by thresholding the b3/b4 band ratio. Figure 6 depicts the 

outcome of b3/b4 thresholding after overlaying the findings on the geological map depicted in Figure 6. As 

the figure demonstrates, in most regions Astana has been able to identify sedimentary rocks from igneous 

rocks. The region indicated by r01, r02, and r03. In the above-threshold regions, it indicates that the rocks 

must be sedimentary, yet the lithology map indicates that they are volcanic. In addition, the majority of tuff 

and volcanic rocks are classed as either igneous or volcanic rocks. The threshold indicates that the rocks in 

regions r04 and r05 are of volcanic and igneous origin, however the lithology map indicates that they are of 

sedimentary origin. 

 

 

Fig. 6. depicts sedimentary rocks with a high b3/b4 band ratio, G2 volcanic and igneous rocks with a low 

b3/b4 band ratio, G3 sedimentary rocks with a low b3/b4 band ratio, G4 igneous or volcanic rocks with a 

high b3/b4 band ratio, and G5 tuff and volcanoclastic rocks with a predominantly low b3/b4 band ratio. In 

areas r01, r02, and r03, volcanic rocks have high b3/b4 band ratios, whereas sedimentary rocks have low 

b3/b4 band ratios in regions r04 and r05. The vegetation is depicted in black. 

 

The change of ferromagnesian minerals into quartz, chlorite, epidote, calcite, dolomite, and albite is known 

as propylitic alteration (Sinclair 2007). Phyllic alteration zones, on the other hand, are made of quartz, 

sericite, and pyrite. In addition, argillic alteration is composed of quartz, illite, pyrite, kaolinite, smectite, 

montmorillonite, and calcite (Sinclair 2007). Except for quartz, which is infrared passive in the SWIR 

spectrum region, other propylitic alteration minerals absorb in band 8 of the ASTER spectrometer and 

partially in band 7 (Dalton et al. 2004; Rasouli Beirami and Tangestani 2020). Consequently, propylitic 

alteration can be identified with the ASTER meter's propylitic alteration mineral index (b6 b9)/(b8 b8). Due 

to the presence of Fe and Mg oxides, ferromagnesium minerals typically absorb in bands 7 and 8 (Singer 

1981; Crown and Pieters 1987; Horgan et al. 2014) (Rowan and March 2003). Consequently, the preceding 
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index can also identify magnesium minerals. In the absence of mafic rocks, however, the aforementioned 

mineral index reveals propylitic alteration zones. Figure 7 depicts the propylitic alteration zones determined 

by the aforementioned procedure. It is evident that the propylitic alteration zone has damaged portions of 

the monzonitic mass of Shiwal Daghi. 

 

Illite, kaolinite, sericite, and other clay minerals, which are more numerous in the mineralization of phyllic 

and argillic alteration zones, exhibit ASTER gauge band 6 absorption. Therefore, the presence of these 

minerals can be recognized with the Bierwith clay mineral index, which is (b5 b7)/(b6 b6) (Bierwith 2002; 

Kalinowski and Oliver 2004; Testa et al. 2018), or similarly with the (b5 b7)/(b6 b6) ratio (Bierwith 2002; 

Kalinowski and Oliver 2004; Testa et al Using the band ratio picture (b5+b7)/b6 (Rowan and Mars, 2003) 

or (b4 + b7) / (b6 + b6) (Rowan, Mars, and Simpson, 2005), objects are categorized. Additionally, these 

band ratios can be utilized to detect silt and clay in alluvial deposits (Rasouli Beirami and Tangestani 2020). 

This index can be used to delineate zones of argillic and phyllic alteration where the rocks are igneous or 

volcanic. The argillic alteration distribution zones obtained using the method described above indicate that 

the argillic alteration zones in granodiorite, monzonite, dacite, trachyte, and ignimbrite rocks are more 

widespread in the vicinity of the Songon copper deposit and up to approximately 8 kilometers south of the 

deposit. This supports the relationship between copper deposits and intense alteration halos (Hezarkhani 

2006). Except in the region of the skarn rock unit in the northern portion of the intrusive mass, the Shiver 

Dagh quartz-monzonite intrusive mass shows no indications of argillic alteration. 

 

 

Fig. 7. A lithological map of the research area generated using MF, SAM, and band ratio estimates. K01 

refers to extensively altered volcanic rocks, K02 to sedimentary rocks recognized by MF, and K03 to dark 

basalts with a larger concentration of ferromagnesian minerals, such as pyroxene. K04 and K05 display 

zones of argillic and propylitic alteration, respectively. 

 

10-4. Images captured by the Spectral Angle Mapper (SAM) 

 

Figure 3 depicts a variety of igneous rock units that were entered into the SAM algorithm to evaluate its 

rock mapping capabilities. The SAM algorithm could differentiate between igneous and volcanic rocks, 
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sedimentary rocks, and alluvial deposits. The outcome of the SAM method in differentiating sedimentary 

rocks from igneous and volcanic rocks was quite comparable to Figure 4's PCA image and Figure 5's b3/b4 

band ratio image. Although the SAM algorithm is sufficiently sensitive to the spectral difference between 

volcanic and sedimentary rocks, the results indicate that it is not sensitive to the spectral alterations of 

lithological units that are more comparable. In addition, the generated SAM images have a low standard 

deviation of the digital values of the image pixels, making the distinction between the target and the 

backdrop confusing. The SAM algorithm was therefore not chosen for further image processing. 

 

10-5. Matching Filtering (MF) photographs 

 

Figure 3 depicts spectra that were entered into the matched filtering (MF) algorithm to evaluate its efficacy. 

Figure 7 demonstrates the outcomes. Figure 3 depicts the spectrum inputs chosen for the program. As 

depicted in Figure 2, the spectral distinction between igneous and volcanic rocks is quite slight, and the 

typical spectrometer images cannot distinguish between them. Similar to the SAM algorithm, the MF 

algorithm is incapable of distinguishing between volcanic and igneous rocks. 

 

Real color composite pictures from Landsat 8 reveal altered ignimbrite and significantly altered volcanic 

rocks with the absorption properties of ferric iron oxides in the southernmost portion of the study area. These 

stones have low PCA band 5 pixel values. Figure 3 illustrates the spectrum of these stones. The average 

spectrum of the stone unit has been entered into the MF algorithm in order to identify these stones. Figure 

7 demonstrates that the MF algorithm is capable of detecting these extensively changed rocks. The majority 

of Songun copper deposit rocks are also significantly changed and exhibit the distinctive absorption 

properties of ferric iron oxides. This is because ongoing mining in the deposit has caused extensive 

weathering and dissolution of sulfur minerals, as well as the release of iron from copper-iron sulfides such 

as pyrite. Figure 7 depicts rocks that have been significantly changed by K01 in the rectangular regions r07 

and r08. 

 

As depicted in Figure 7, MF is also capable of distinguishing dark basaltic rocks and igneous rocks with a 

larger proportion of pyroxene and/or olivine minerals (characterized by K03) from other igneous rocks. 

Clay and shale minerals share ASTER gauge band 6 absorption properties. To recognize clay-rich 

sedimentary rocks such as shale, the MF algorithm was fed the spectrum of argillaceous sedimentary rocks 

recovered from the IARR image as shown in Figure 3. The results indicate that the majority of sedimentary 

clastic rocks in the region are intermixed with volcanic clastic elements, and that the extent of pure 

sedimentary rocks is extremely limited. In reality, a comprehensive investigation of the region's geological 

maps reveals that the sedimentary rocks of the region under study contain a considerable amount of volcanic 

components. Most volcanic rocks have reached the alluvial cone, particularly in the southern portion of the 

investigated region. In these regions, sedimentary and volcanic rocks are therefore intricately intermixed 

and cannot be separated using the MF method. 

 

The areas with the largest abundance of argillic materials were separated using the band ratio (b5 b7) / (b6 

b6) and the resulting image was overlaid with volcanic and magmatic rocks to detect argillic alteration. 

Similarly, the band ratio (b6 b9) / (b8 b8) was covered by igneous and volcanic rocks to reveal propylitic 

alteration. Figure 7 depicts the results respectively. 

 

11. CONCLUSION 

 
By studying satellite photos, it was discovered that the spectral features of igneous and volcanic rocks in 

the area of study are nearly identical. This is due to the poor SWIR spectrum characteristics of quartz and 

feldspar. However, it has been demonstrated that a combination of PCA, MF, and band ratio may be used 

to distinguish igneous and volcanic rocks from sedimentary rocks and to identify argillic and propylitic 

alteration zones. Around the Songun porphyry copper deposit, the most significant argillic alteration and 
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moderate propylitic alteration were seen. Except for the region of the skarn deposit, there is no argillic 

alteration in the Shiver Daghi monzonitic bulk. In contrast, substantial propylitic alteration occurs in the 

monzonite mass of Shiver Daghi. It is determined that the value of ASTER images for mapping areas 

containing igneous and volcanic rock units is restricted, but mapping such areas with the proper techniques 

can provide important information and likely disclose the locations of porphyry copper mineralization. 
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