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ABSTRACT 
 

The inverse kinematic model uses robot design parameters: ideal link lengths and mounting angles. In 

practice, these values hardly coincide with the design values due to manufacturing and assembly processes 

or continuous use of the robot. In order to reduce this geometric error, it is necessary to calibrate the robot 

to update the geometric model and reduce the resulting error of the robot end-effector. In this work, we 

propose a methodology based on a vision system to calibrate the robot's geometric parameters and minimize 

the error between the robot’s end-effector theoretical and real trajectory. This way, variations are introduced 

to the geometric parameters that generate errors between the robot's desired position and the position 

developed. The results show up a reduction of the average position error of 54.6%. 

 

Keywords: Robot calibration, trajectory tracking, D-H model compensation 

 

RESUMEN 
 

El modelo cinemático inverso utiliza parámetros de diseño del robot: longitudes de eslabones y ángulos de 

montaje ideales. En la práctica, estos valores difícilmente coinciden con los valores de diseño debido a los 

procesos de fabricación y montaje o al uso continuo del robot. De esta forma, se introducen variaciones en 

los parámetros geométricos que generan un error entre la posición deseada del robot y la posición 

desarrollada. Para reducir este error geométrico, es necesario realizar una calibración del robot para 

actualizar el modelo geométrico y reducir el error resultante del efector final del robot. En este trabajo se 

propone una metodología basada en un sistema de visión para calibrar los parámetros geométricos del robot 

y minimizar el error entre la trayectoria teórica y la real del efector final del robot. Los resultados muestran 

una reducción del error medio de posición del 54,6%.   
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1. INTRODUCCIÓN 
 

Automation has increased the number of robots to perform many industrial tasks worldwide. The 

International Federation of Robotics (IFR) published records mentioning that in 2020, 3.01 million robots 

were in operation worldwide. This number will be increased by more than 517 thousand units per year (IFR, 

2022). However, in robots, positioning errors may occur due to the deviation of the nominal or design 

parameters compared to the real parameters. This can happen due to manufacturing and assembly errors 

(Costa et al., 2020; Li et al., 2019; Roth et al., 1987), friction (Roth et al., 1987), material used for its 

construction (Zha et al., 2020; Roth et al., 1987), temperature (Santolaria et al., 2009; Roth et al., 1987), 

shear forces (Olsson et al., 2010). These differences mainly affect the geometric parameters of the direct 

and inverse kinematic models, introducing errors to link lengths (∆li) and/or angular values of the joints 

(∆θi). Within the literature, various ways exist to determine these variations to compensate and reduce the 

error between the desired position and the real position of the robot end-effector. 

 

In Zu et al., (2021), the authors establish the kinematic model of a serial 6-DOF robot. This work 

compensates the geometric parameters and links deformation due to the load in the robot end-effector. 

Position average error was reduced from 7.25 mm to 1.29 mm, representing an increase in position accuracy 

of 82.84%. The work presented in Diaz-Cano et al., (2021) uses a hand-eye methodology for robot 

calibration, using a structured light 3D camera (Kinect 360) that obtains information from the real world 

and a six-axis industrial robotic arm. In Stepanova et al., (2022), there is a system of two serial manipulators 

with a sphere at the robot end-effectors of each one. Torque sensors in their motors determine the instant in 

which both spheres have contact. Ideally, this should occur at specific defined angular values. However, 

these are produced experimentally at other values, the existing difference being the data used to determine 

the parameters within the D-H model. In Wang et al., (2023), the authors present a classic quaternion as a 

good representation of rotation that exerts its advantage for the separable methods of the hand-eye 

calibration problems. 

 

Following these methodologies, this work uses a vision system to calculate the compensation of the 

geometric parameters as in Liu et al., (2020). The authors use an optical tracking system in a serial robot of 

the brand Universal Robot. The optical system can obtain the coordinates of the robot end-effector and its 

orientation in real time. By calibrating the geometric parameters, the error of a sequence of points was 

reduced from 3 mm to less than 0.2 mm in average. In Wang et al., (2021), the accuracy of a robot KUKA 

KR500-3 is increased by 80.84% concerning the position and 57.29% concerning the orientation of the 

robot end-effector employing a binocular vision system. Finally, Yan et al., (2021) uses a pattern sphere and 

a monocular vision system mounted on the robot end-effector. The camera takes images of the sphere from 

different positions and orientations. Using the D-H model, the geometric center of the pattern is determined, 

and the difference between the known value and the calculated one is used for robot calibration. The work 

presented in Costa et al., (2020) proposes a strategy to evaluate the geometric errors of the rotor system of 

a hydrostatic rotary table. The authors use an ultra-precision CMM (Coordinate Measuring Machine). The 

result shows that the perpendicularity error between the two thrust plates and the rotor is 14 µm and 21 µm, 

respectively. The parallelism error between the two thrust plates is 28 µm with a measurement uncertainty 

of 0.5 µm. Furthermore, the experimental result on the optimization method to guide the rotor system 

assembly indicates that the parallelism error was reduced to 12.1 µm, noting an improvement of 57%. 

 

There are different procedures for robot calibration. Some works use laser tracking systems, single or dual 

camera vision systems, torque sensors in the manipulator’s joints, and advanced optical systems capable of 

determining the position and orientation of the robot end-effector in real-time. However, all these tools tend 

to have a high cost, mainly used for calibrating industrial robots and seeing their application limited in the 

design and development of non-industrial prototypes. In Mechatronics, there are many implementations of 

two and three-DOF planar robots with open and four and five-bar linkage with closed kinematic chains. The 

main characteristic of all of them is that they restrict their movement to one plane. This document proposes 
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a tracking system capable of evaluating the performance of a robot during trajectory and their calibration 

using a commercial webcam. An algorithm detects the targets placed on the robot. We computed the robot 

end-effector coordinates (x,y) using the direct kinematic and pinhole camera models. The algorithm 

computes the coordinates of a trajectory made by the robot. The algorithm uses this information to obtain 

the calibration parameters that allow updating the direct and inverse kinematic model. Finally, we reduced 

the error considerably after the procedure. 

 

Section 2 describes the robotic system used in the document. The authors establish the direct and inverse 

kinematic model of the 3-DOF planar serial manipulator, where the lengths of the links were obtained by 

measurements made to the CAD design. In section 3, the characteristics of the vision system are mentioned. 

The transformations are necessary to convert the coordinates (u,v) from a point on the image to a point (x,y) 

regarding the robot system, as well as the camera projection and distortion model used in the calibration of 

the toolbox by Matlab. The target detection algorithm uses a sequence of filters to analyze the image and 

determine the geometric center of the circles located on the axes of rotation of the servo motors. The target 

detection algorithm allows us to extract the center of the targets placed on the robot joints. In section 4, the 

modified direct and inverse kinematic model is described. This section describes a compensation model for 

the length links and the joint angles. We define the path error function and an iterative algorithm for 

determining the parameters that minimize the error function. Finally, section 5 presents the results obtained. 

Starting with the camera calibration parameters, the results of the optimization algorithm for the three 

calibrations performed, as well as the change in the trajectories developed by the manipulator after the 

update of the inverse kinematic model by analyzing how the average error in position behaves in the points 

of the trajectory. 

 

2. MODEL OF THE ROBOTIC SYSTEM 
 

Figure 1.(a) shows a serial manipulator with 5-DOF. However, in the implementation made in this article, 

only the three active joints with parallel axes of rotation are enabled. This simplification makes it possible 

to measure the position (x,y) of the points of interest A, B, C, and F using a single camera. This way, the 

robot can be modelled as a 3-DOF planar manipulator. 

 

 
 

(a) 5-DOF serial manipulator with only 3-DOF 

enabled. 
(b) Kinematic model of a 3-DOF planar manipulator. 

Figure 1: Kinematic model and CAD model of the 3-DOF serial planar robot. 

 
2.1 Direct and inverse kinematic models of the 3-DOF planar manipulator 

 

During the operation of a robotic system, its end-effector must move to the required position. In order to 

carry out a task, it is necessary to establish a system of equations that relate the degrees of freedom of the 
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manipulator (position and orientation of the robot end-effector) as a function of the joint control variables. 

A recurring solution is to use the algorithm of Denavit-Hartenberg (D-H). This algorithm shifts the reference 

frame from the robot’s base to the robot end-effector using rigid rotation and translation transformations on 

the axes x and z. To bring the reference system from point i−1 to point i, we calculate i−1Ai = T(z, θi)T(z, 

di)T(x, ai)T(x, αi), defined by (1). 

 

i-1Ai = (

cosθi - cos αi sinθi

sinθi cos αi cosθi

sin αi sinθi ai cos θi

- sin αi cosθi ai sin θi

0              sin αi

0             0

cos αI              di

0              1

)  

 

 

(1) 

Where T(z, θi) is a rotation of θi degrees around the axis z, T(z, di) is a translation of di units through the axis 

z, T(x, ai) is a translation of ai units through the axis x, and T(x, αi) is a rotation of αi degrees around the axis 

x. The kinematic model of a 3-DOF planar robot using the D-H algorithm has been described numerous 

times in existing literature (Banga et al., 2009; Duka et al., 2014; ZHEKOV et al., 2020; Gonzalez-Barbosa 

et al., 2022; Elsisi et al., 2021). Table 1 shows nominal robot geometrical parameters, where an offset has 

been added in angles of the active joints. In this way, the zero position coincides with the one shown in 

Figure 1.(a). In addition, point C, E, and F are rigidly joined, that is, the angle formed between the vectors 

CE and EF is constant, as well as their magnitude. The length of the links shown in Figure 1.(b) was 

obtained by making measurements in the CAD design. 

 
Table 1. D-H parameters of the 3-DOF planar manipulator. 

 

Point i ai (mm) αi (rad) di (mm) θi (rad) 

B l1 = 120.00 0 0 θ1  +
π

2
 

C l2 = 121.70 0 0 θ2 +
π

2
 

E l4 = 38.00 0 0 θ3 +
π

2
 

F l5 = 6.73 0 0 −
π

2
 

 

Using Equation 1 and data presented in Table 1. Equations (2), (3), and (4) were obtained. These equations 

represent coordinates (x,y) of the point F, and the angle of rotation around z-axis of the robot end-effector.  

 

Fx = -l1s(θ1)-l2c(θ12)+l4s(θ123)-l5c(θ123) 

 

(2) 

Fy = l1c(θ1)-l2s(θ12)-l4c(θ123)-l5s(θ123)  

 

(3) 

θ = θ123+π (4) 

 

Where θ12=θ1+θ2, θ123=θ1+θ2+θ3, s(θ)=sin(θ), y c(θ)=cos(θ). Using equations (2), (3), and (4), inverse 

kinematics of the robot is determined, θi(Fx,Fy,θF), i∈{1,2,3}. Given the coordinates (x,y) and orientation 

θF that are required in the robot end-effector we can calculate articular displacements necessary to carry out 

it. Implementing (1) again and data from Table 1 equations (5) and (6) are established. These equations 

represent the coordinates (x,y) of point C. 

 

C𝑥=Fx-l4s(θF-π)+l5c(θF-π) (5) 

  

Cy=Fy+l4c(θF-π)+l5s(θF-π) (6) 
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With auxiliary equations (5) and (6) equations (7), (8), and (9) are established. 

 

θ2 = -arcsin (
Cx

2+Cy
2-l1

2
-l2

2

2l1l2
) 

 

(7) 

θ1 = -arctan (
Cyl2c(θ2)-Cx(l2s(θ2)-l1)

Cxl2c(θ2)+Cy(l2s(θ2)-l1)
) 

 

(8) 

θ3 = θF - θ1 - θ2 - π (9) 

 

 

3. MODEL OF THE VISION SYSTEM 

 
In Durović et al. (2017), the authors use a RGB-D vision system external to the robot end-effector that 

allows observing at the same time position and orientation of the SCARA robot end-effector and the object 

to be taken. The authors propose a two-step calibration system and a low-cost vision system-based planning 

method. The positioning of the tool is achieved using mark tracking and depth information that is provided 

by RGB-D camera without encoders or other sensors. 

 

This work proposes to measure coordinates (x,y) of the point F, as shown in Figure 2. Using the toolbox by 

Matlab camera calibration, we compute the intrinsic and extrinsic parameters of rotation and translation of 

the camera that allow us to project a point in the camera reference system to the reference system of the 

calibration pattern defined by (10). 

 

Pcal= Rcam
cal Pcam+ tcam

cal  (10) 

 

 
Figure 2. Installation of the robot, camera, and calibration standard. 

 

 

 

Where Pcal is a point concerning to calibration pattern's coordinate system, Pcam is a point concerning to 

camera’s coordinate system, and Rcam
cal  and tcam

cal  are the rotation matrix and the translation vector 

respectively, between both reference systems. 

 

However, we need to obtain coordinates (x,y) in mm of the point F regarding point A. The vector AFrob = 
Frob - Arob is calculated, where the subscript rob indicates that they are referenced to robot’s coordinate 

system. Nevertheless, both points measured by the camera are referenced to the calibration pattern obtained 

by equation (11). 

AFrob = Frob - Arob= Rcal
rob  (Fcal - Acal)  (11) 
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In equation (11), it can be observed that the vector of translation between the calibration pattern’s coordinate 

system and robot’s coordinate system  tcal
rob  disappears due to the subtraction. Rcal

rob  represents the rotation 

matrix between both reference systems. The matrix transformation does not have rotation around x and z 

axes, it only has a rotation of π radians around y axis. This rotation on xz-plane is represented by the equation 

(12). 

(

-1

0
0

0

0

1
0

0

0

0
-1

0

0

0
0

1

) (

x

y
z

1

) = (

-x

y
-z

1

) (12) 

 

3.1 Camera model 

 

The pinhole model has been implemented repeatedly within literature (Yan et al., 2021; Arredondo-Soto et 

al., 2021). This model is used in Matlab toolbox camera calibration defined by (13). 

 

w(u v 1 ) = (X Y Z 1) (
R

K
) K = (X Y Z 1) (

r11

r21

r12

r22

r13

r23

r31

tx

r32

ty

r33

tz

) (

f
x

0 0

s f
y

0

cx cy 1

) (13) 

  

Where extrinsic parameters are represented by R, and T, the rotation matrix, and the translation vector, 

respectively. Matrix K represents intrinsic parameters. Vector (u v 1) corresponds to homogeneous 

coordinates of a point in the digital image, (X Y Z 1)are the homogeneous coordinates of a 3D point in 

world reference system, and w is a scale factor. 

 

To simplify computing of the measurement algorithm, product of extrinsic and intrinsic parameters matrices 

can be performed to obtain the matrix M defined by (14).  

 

𝑴 = (

𝑚11 𝑚12 𝑚13

𝑚21 𝑚22 𝑚23
𝑚31 𝑚32 𝑚33

𝑚41 𝑚42 𝑚43

) = (

r11

r21

r12

r22

r13

r23

r31

tx

r32

ty

r33

tz

) (

f
x

0 0

s f
y

0

cx cy 1

) = (
R

K
) K  (14) 

 

Finally. Calibration results also determines camera’s radial and tangential distortion parameters necessary 

to eliminate distortion due to the manufacture of camera’s lens. These values are obtained in a vector 

(k1 k2 k3
p

1
p

2), where k1, k2, and k3 are associated with radial distortion and p
1
 and p

2
 with 

tangential distortion. Radial and tangential distortion are calculated using (15). 

 

(
xq

y
q
) =(1+k1r2+k2r4+k3r6) (

u

v
) + (

2p
1
uv+p

2
(r2+2u2)

p
1
(r2+2u2)+2p

2
uv

) (15) 

 

Where (xq,y
q
) are coordinates of a point in the distorted image, (u,v) are coordinates of a point in the 

corrected image, and r2 = u2 + v2. 

 

3.2 Measurement algorithm 

 

To calculate the coordinates (x,y) of the point F. We have to determine the coordinates (u,v) of the point 

within the image taken by the camera and use (13) that relates both reference systems. The algorithm shown 

in Figure 3 was implemented, it shows the steps carried out to identify the points A, B, C, and F in the digital 

image. Sampling of fifty images of the manipulator was carried out in each developed trajectory. 
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(a) Captured RGB image. 
(b) Red channel 

extraction. 

(c) Gaussian smoothing 

filter with σ=2. 
(d) Sobel derivative filter. 

   

 

(e) Binarization with 

μ=0.5. 

(f) Morphological opening 

operation. 

(g) Detection by circular 

Hough transform. 

 

Figure 3. Steps to follow up on key points. 

 

A sequence of filters was implemented to extract the outline of the circles. Once the capture is made, the 

red channel is taken, which presents the greatest contrast between the patterns to be followed and the piece 

where they are located. A Gaussian smoothing filter is applied to remove the noise from the capture, 

followed by a Sobel derivative filter in u and v axes independently and then calculate the gradient using 

both results. Once the previous steps have been carried out, the contour of the circles is extracted. Therefore, 

the binarization of the image is carried out, followed by the morphological opening operation to eliminate 

a few isolated points. Finally, with the image shown in Figure 3.(f), the circular Hough transform is executed 

to determine the position of the center of the circles, which are the coordinates in the image of the points A, 

B, C, and F. 

 

With the coordinates (u,v) of the points A and F, values of  matrix M are calculated by (14) where the 

distance z0=-80.87 mm, which represents the existing distance in z-axis between the calibration plane and 

the plane in which the planar manipulator moves. We have all the data that we need to use (16) to determine 

the coordinates (x,y) of points A and F. 

 

(
x

y) = (
m11-m13u m21-m23u

m12-m13v m22-m23v)
-1

(
 (m43u-m41)+(m33u-m31)z0 
 (m43v-m42)+(m33v-m32)z0 

) (16) 

 

4. ROBOT CALIBRATION ALGORITHM  

 
Robot calibration is performed three times using the following trajectories: 

 

 In the first trajectory, the point F must be displaced in a circle centered at the point x=-130 mm, 

y=40 mm with a radius of 15 mm, with an orientation of the end effector of θF=π. 

 

 In the second trajectory, a circle is made centered at the same point with the same orientation of the 

robot end-effector but this time with a radius of 25 mm. 

Path 1 is used for the first calibration, path 2 is used for the second calibration, and paths 1 and 2 are used 

simultaneously for the third calibration. A third trajectory is used as validation. In this, the trajectory makes 

a straight line that goes from the point x1=-145 mm, y1=25 mm to the point x2=-115 mm, y2=45 mm. 

Applying (7), (8), and (9). We computed the joint trajectories corresponding to each cartesian trajectory. 

Figure 4 shows the joint trajectories necessary for the first cartesian trajectory. Since the sampling was of 
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fifty points for each trajectory, we have fifty pairs of coordinates (x,y), in addition to joint values (θ1,θ2,θ3). 

Arduino Uno board writes these values, and once the displacement is completed, the image is captured. This 

image shows that the coordinates (u,v) of points A and F are calculated using the process described in Figure 

3. Radial and tangential distortion of the image is eliminated using the parameters (k1,k2,k3,p1,p2) obtained 

in the camera calibration, and then we can use the values of the matrix M in (16). 

 

  
(a) Cartesian trajectory of the point F, circumference 

centered in x=-130 mm, y=40 mm, with a radius of 15 

mm. 

(b) Joints trajectory trajectories to perform the 

cartesian trajectory. 

Figure 4. Cartesian and joints trajectories of 3-DOF planar serial robot. 

 

Ideally, dimensions l1, l2, l4, and l5 coincide with the measurements obtained in the CAD model. However, 

due to 3D printing and assembly, there is a difference between its real and theoretical value ∆li. Similarly, 

θ1,θ2,θ3 represent the angular values of the DC servo motors mounted in rotational joints. The zero pose 

should be shown in Figure 1, but at the time of installation, an error occurs generating values ∆θi. Introducing 

these variations to the ideal model presented in (2) and (3). We obtain equations (17) and (18). 

 

F'
x = -l

'
1s(θ

'
1)-l

'
2c(θ

'
12)+l

'
4s(θ

'
123)-l

'
5c(θ

'
123) 

 

(17) 

F'
y = l

'
1c(θ

'
1)-l

'
2s(θ

'
12)-l

'
4c(θ

'
123)-l

'
5s(θ

'
123)  

 

(18) 

Where l
'
i=li+∆li, i∈{1,2,3}, θ

'
1=θ1+∆θ1, θ

'
12=θ12+∆θ1+∆θ2, θ

'
123=θ123+∆θ1+∆θ2+∆θ3. Finally, the error is 

defined by (19), where the values of l1, l2, l4, and l5 are those presented in Table 1, and values for θ1, θ2, and 

θ3 are those calculated using the inverse kinematics equations (7), (8) and (9). 

 

en=√(xn-F'
x)

2
+(y

n
-F'

y)
2
,   n∈{1,2,...,N} (19) 

 

Where (xn,y
n
) are the measured coordinates of the point F in the sample number n when the robot’s end-

effector is executing the trajectory. Since we have N samples, the vector E defined by (20) is obtained. 

 

𝑬 = (𝑒1, 𝑒2, 𝑒3, . . . , 𝑒𝑁)𝑇 (20) 

 

Equation (21) represents the average error of the N samples. 

error=
1

N
∑ en

N

n=1

 (21) 

In our case N=50, in first and second calibration, while N=100 at the third calibration. The Jaccobian of 

error function (function to be optimized) is defined by equation (22). 
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 J = (
∂E

∂∆l1 

∂E

∂∆l2 

∂E

∂∆l4 

∂E

∂∆l5 

∂E

∂∆θ1 

∂E

∂∆θ2 

∂E

∂∆θ3 
) (22) 

 

Using an iterative algorithm, values X = (∆l1, ∆l2, ∆l4, ∆l5, ∆θ1, ∆θ2, ∆θ3) that minimizes function (21) are 

calculated by the update equation (23) and the starting vector 𝑿0. 

 

Xk+1=Xk - αEk
TJk (23) 

 
Where α is the size of the step for the minimum error search. Algorithm 1 is proposed for the calibration of 

the robot. 

 
Algorithm 1. Robot calibration 

1: Procedure: Calibration 

2: Inverse kinematics(l1,l2,l4,l5,Fx,Fy,θF) → (θ1,θ2,θ3), 𝑠𝑒𝑒 𝑠𝑒𝑐𝑡𝑖𝑜𝑛 2.1 
3: Camera calibration → 𝑴, k1, k2, k3, p1, p2, see section 3.1 

4: Trajectory measurement → {(x1,y
1
),(x2,y

2
),(x3,y

3
),...,(x𝑛,y𝑛)}, see section 3.2 

5: Error minimization: 

6: 𝑿0 ← (5,5,1,1,5,5,5) % Initialization 

7: 𝑘 ← 0  
8: While error ≥ errorMax do: 

9: F
'
x← (l1,l2,l4,l5,θ1,θ2,θ3,Xk), equation (17) 

10: F
'
y ← (l1,l2,l4,l5,θ1,θ2,θ3,Xk), equation (18) 

11: Ek
T
 ← (x1,y

1
,F

'
x,F

'
y), equation (20) 

12: 𝑒𝑟𝑟𝑜𝑟 ←Ek
T
, equation (21) 

13: Jk ← (l1,l2,l4,l5,θ1,θ2,θ3,Xk,Ek
T
), equation (22) 

14: Xk+1 ← Xk,α,Ek
T, Jk, equation (23) 

15: k ← k+1 

16: Robot calibration → (∆l1, ∆l2, ∆l4, ∆l5, ∆θ1, ∆θ2, ∆θ3) 

17: Inverse kinematics with D-H compensation (l1,l2,l4,l5,Fx,Fy,θF) → (θ1,θ2,θ3) 

18: Trajectory measurement with D-H compensation → {(x1,y
1
),(x2,y

2
),(x3,y

3
),...,(x𝑛,y𝑛)} 

 

5. Experimental Results  

 
5.1 Camera calibration 

 
For the camera calibration of  ACTECK WM20 Webcam, we use a chess pattern of 7-row and 10-column, 

where each square is 23 mm in length. Twenty captures of the pattern calibration were taken to perform the 

calibration using Matlab. The extrinsic and intrinsic parameters values obtained from the camera calibration 

and the radial and tangential distortion values are presented in Table 2. 

 
5.1.1 Vision system evaluation 

 
To determine the accuracy of the vision system, we made measurements of patterns of the brand Mitutoyo 

of 40 mm, 30 mm, 10 mm, and 5 mm. A process similar to that described in Figure 3, was carried out to 

measure the known length. Twenty measurements were made of each of the patterns, changing the position 

between each capture. The presented results of this evaluation are presented in Table 3. As in Icasio-

Hernandéz et al. (2019), the uncertainty U of the parameters is calculated as indicated by (24) 
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Table 2. Extrinsic, intrinsic and distortion parameters of the camera. 

 

Parameter Value Parameter Value Parameter Value Parameter Value 

f
x
 1438.6338 r11 -0.9988 r12 -0.0047 r13 0.0496 

f
y
 1439.1291 r21 0.0041 r22 -0.9999 r23 -0.0129 

cx 654.1560 r31 0.0497 r32 -0.0127 r33 0.9987 

cy 369.6557 tx 118.6608 t𝑦 41.3400 t𝑧 565.4370 

s 0.0000 k1 0.1630 k2 0.0428 p
1
 0.0064 

p
2
 0.0016 k3 -2.1819     

 
Table 3. Results of the vision system evaluation. 

 

Length of the pattern (mm) Average measurement (mm)2 Mean square error (mm) Uncertainty 

40 40.2301 0.0688 0.1294 

30 30.2279 0.0651 0.1175 

10 10.2029 0.0492 0.0921 

5 5.2320 0.0595 0.0776 

 

 U = σx=√
∑ (q

j
-q̅)

2n
j=1

n-1
 

(24) 

 

Where n corresponds to the number of times the parameter or measurement is calculated, q
j
 represents the 

j-ith calculated value, and q̅ is the average of the n measurements. 

 

5.2 Robot calibration 

 

The values of the constants ∆l1, ∆l2, ∆l4, ∆l5, ∆θ1, ∆θ2, and ∆θ3 obtained from the optimization carried out 

using Algorithm 1 in the three calibrations carried out are presented in Table 4. 

 
Table 4. Robot calibration parameters performed using Algorithm 1 for three different calibration paths. 

 

Parameter First Calibration Second Calibration Third Calibration Uncertainty 

∆l1 (mm) 6.6740 6.7015 6.6341 0.0339 

∆l2 (mm) 4.5566 4.5704 4.5967 0.0204 

∆l4 (mm) -0.6543 -0.7074 -0.6110 0.0483 

∆l5 (mm) 0.9701 1.0208 1.0120 0.0271 

∆θ1 (°) 1.0875 1.1354 1.0304 0.0526 

∆θ2 (°) 1.0521 1.0037 1.0231 0.0244 

∆θ3 (°) 4.7973 4.7563 4.7755 0.0205 

 

Second calibration results and the modified inverse kinematics represented by (17) and (18) are used to 

calculate the angular values of the planar robot joints. As mentioned in section 4, the third path is used to 

analyze the result of the robot calibration. Fifty samples of the trajectory were made again with the 

compensation of the geometric parameters, using the procedure of section 3.2. Figure 5 shows the 

displacements along the axes x and y, respectively, before and after the modification to the inverse kinematic 

model of the manipulator. 

 

Figure 6 shows the error defined by (19) for the validation trajectory generated before and after the 

modification to the kinematic model (obtained with data of second calibration) of the manipulator. The 

average error in the trajectory position was reduced from 4.0064 mm to 1.8186 mm, which means a 

reduction of 54.6076%. 
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(a) Path along x-axis. (b) Path along y-axis. 

Figure 5. Cartesian trajectory of point F in x-axis and y-axis. 

 

 
Figure 6. Error calculated using equation (19) for a linear trajectory. 

 

6. Conclusions and future work 

 
This document shows that by measuring the trajectory of the end effector at a certain number of points and 

evaluating the error of the robot end-effector with respect to the ideal inverse kinematics, an algorithm can 

be established to determine the variations ∆li and ∆θi necessary to update the geometrical parameters of the 

inverse kinematic model. The measurements were made with a vision system, which has an error of less 

than 0.25 mm. The vision system error was calculated using 40 mm, 30 mm, 10 mm and 5 mm standards 

gauge. Therefore, the measurements made are sufficiently accurate for our implementation. 

 

Calibration was performed three times using two circles of 25 mm and 15 mm of radius. The first calibration 

using the points belonging to the largest radius circle, the second calibration using the points of the smallest 

radius circle. In contrast, the third calibration uses both paths. The results of the three calibrations were very 

similar, generating small uncertainties in the geometric parameters. The inverse kinematic model was 

updated using the geometric dimensions obtained from the calibration, and it was found that the error 

decreased in all the calibrations. The straight-line path tracking was presented on the xy-plane before 

parameter update and after robot calibration. The second calibration was the one that presented the greatest 

reduction in the mean error (54.6076 %). It is shown that the coordinates x of the robot’s end-effector are 

better adjusted to the desired trajectory, keeping the coordinates y around the trajectory. Therefore, it was 

shown that using a single camera, the trajectory tracking performance of a planar robot can be evaluated, 

this being a handy tool for prototyping. However, we can use the same process and add a second camera to 

track trajectories in three-dimensional space. 
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Using single camera allows measurements to be made in the plane where the robot is traveling. However, 

to measure a trajectory in three-dimensional space (with the robot's five degrees of freedom enabled), it is 

necessary to add a second camera. In this way, the spatial coordinates of the robot end-effector can be found. 

The markers used in this implementation are circles located on the axes of rotation of the robot. This 

procedure can be generalized by using a sphere at the robot end-effector. Since both cameras would capture 

a circle, the sphere's center in 3D space coinciding with the centers of each circle in the captured images. 

However, our robot uses frequency DC servomotors, which have a high mechanical play and low resolution 

regarding the control of the angular position, making it necessary to use a robot with better actuators to 

experiment.  

 

Finally, only the optimization of the error function was carried out for the variations in the length of links 

and mounting angles, that is, geometric parameters of the D-H model. However, the error in the position is 

also caused by non-geometric errors, such as end-effector charge, deformation of links due to the load, 

hysteresis, mechanical play, and dead zone of the actuators. They are a future work area the compensation 

of these phenomena during the execution of trajectories. 
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