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ABSTRACT 

 
Automated emotion recognition is crucial in numerous industries that depend on understanding human 

emotional responses, such as advertising, technology, and human–robot interaction, particularly within the 

information technology field. However, current systems are often insufficient for comprehensively 

understanding an individual's emotions, as previous research has mainly focused on assessing facial 

expressions and categorizing them into seven primary emotions, including neutrality. In this study, we 

present several deep convolutional neural network (CNN) models explicitly designed for facial emotion 

recognition, using the FER2013 and RAF datasets. The baseline CNN model is established by trial-and-

error, and its results are compared with more complex deep learning techniques, including ResNet18, 

VGGNet16, VGGNet19, and EfficientNet-B0 models. Among these, the VGGNet19 model achieved the 

best results with a test accuracy of 71.02% on the FER2013 dataset. The ResNet18 model outperformed all 

other models with an 86.02% test accuracy on the RAF-DB dataset. These results will contribute to potential 

studies on automatic emotion recognition and classification with different deep-learning techniques. 

 
 

Keywords: Gesture recognition, deep learning models, VGGNet, ResNet, EfficientNet. 

 

RESUMEN 

 
El reconocimiento automático de emociones juega un papel crucial en numerosas industrias que dependen 

de comprender las respuestas emocionales humanas, como la publicidad, la tecnología y la interacción 

humano-robot, especialmente dentro del campo de la Tecnología de la Información (TI). Sin embargo, los 

sistemas actuales a menudo no logran comprender de manera integral las emociones de un individuo, ya 

que las investigaciones previas se han centrado principalmente en evaluar las expresiones faciales y 

clasificarlas en siete emociones primarias, incluida la neutralidad. En este estudio, presentamos varios 

modelos de Redes Neuronales Convolucionales Profundas (CNN) diseñados específicamente para la tarea 

de reconocimiento facial de emociones, utilizando los conjuntos de datos FER2013 y RAF. El modelo base 

de CNN se establece mediante un método de prueba y error, y sus resultados se comparan con técnicas de 

aprendizaje profundo más complejas, que incluyen los modelos ResNet18, VGGNet16, VGGNet19 y 

EfficientNet-B0. Entre estos modelos, el modelo VGGNet19 logró los mejores resultados con una precisión 

de prueba del 71.02% en el conjunto de datos FER2013. En comparación, el modelo ResNet18 superó a 
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todos los demás modelos con una precisión de prueba del 86.02% en el conjunto de datos RAF-DB. Estos 

resultados destacan el potencial para avanzar en el reconocimiento automático de emociones a través de 

técnicas complejas de aprendizaje profundo. 

 
 

Palabras clave: Reconocimiento de gestos, modelos de aprendizaje profundo, VGGNet, ResNet, 

EfficientNet. 

 

1. INTRODUCTION 

Artificial intelligence and computer vision researchers have focused on the development of automatic facial 

expression recognition (FER) for the decade. Researchers have achieved remarkable results in identifying 

emotions from facial expressions (eg, Bartlett, Stewart, et al., 2004). Furthermore, movement and gesture 

have been explored as essential modes of nonverbal communication in human–human and human–computer 

interactions (Hudlicka, Eva, 2003). However, most studies of automatic emotion recognition have 

concentrated on the face; only recently some researchers have begun to incorporate gestures to express 

emotions in human–computer interactions. 

 

With technological advancements, automated emotion recognition (AEE) has become a pivotal 

component within industries dependent on human emotional responses. AEE encompasses fields such as 

advertising, technology, and human–robot interaction, where it maintains a specific emphasis and holds 

significant importance, especially within the information technology sector. However, the challenges posed 

by cultural and gender differences make AEE more difficult (Allen & Pease, 2004).  

 

Researchers have been exploring innovative approaches to address these challenges and further 

advance the field of AEE. The substantial progress achieved in face emotion recognition using deep learning 

is a promising development in this ongoing effort.  

 

The primary objective of this study was to evaluate facial emotion recognition accuracy using 

sophisticated deep-learning models, including ResNet18, VGGNet16, VGGNet19, and EfficientNet-B0. To 

compare the performance of these complex models with the baseline convolutional neural network (CNN) 

model, we used the FER2013 and RAF-DB datasets, focusing on facial expressions and categorizing them 

into seven primary emotions: anger, disgust, fear, happiness, sadness, surprise, and neutrality. Our findings 

suggest that more advanced AEE systems can be developed by implementing more complex deep-learning 

techniques. 

 

The rest of the paper is structured as follows: Chapter 2 presents related research and the literature 

review. Chapter 3 describes the methodology of the study. Chapter 4 presents and analyzes the results of 

the study. Finally, conclusions and future directions are provided. This chapter contains general evaluations. 

 

2. RELATED WORK  

 
In recent years, algorithms based on deep neural networks (DNNs) have become more extensively used in 

image and video analysis. CNNs, including Residual Neural Network (ResNet), VGGNet, and AlexNet 

have proven to be successful in image classification and feature extraction (Simonyan & Zisserman, 2014; 
Krizhevsky et al., 2017). 

 

Automatic facial behavior analysis involves tasks such as recognizing basic expressions, estimating 

continuous emotions, and detecting facial action units, and has advanced significantly due to large-scale 

datasets and DNNs. For example, Kollias et al., (2019) introduced FaceBehaviorNet, a comprehensive 

multitask, multidomain, and multilabel network that outperforms single-task networks (Kollias, 
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Sharmanska, 2019; Zafeiriou, 2019). They also proposed strategies for coupling tasks during training, 

highlighting the advantages of this approach. Furthermore, they have released the Aff-Wild2 dataset, which 

is the first extensive in-the-wild dataset to provide detailed annotations for each of the three primary 

behavior tasks (Kollias & Zafeiriou, 2019).  

 

Some researchers exclusively use deep convolutional neural networks to classify basic facial 

emotions. In contrast, others integrate an additional memory cell aggregating multiple frames to predict 

current arousal and valence. The FER2013 dataset is used for their research in the following studies. Zhang 

et al., (2015) used a multi-merged dataset approach for FER2013. They expanded their dataset by including 

three additional datasets: AFLW, Celeb-faces, and FER2013 datasets. These databases contained labelled 

facial attributes and the authors introduced a bridging layer that connected the output with the FER2013 

dataset to use the features across these datasets. Their method achieved an accuracy of 70.6% in FER2013.  

 

Devries et al., (2014) developed a method for improving FER2013 by accurately assessing the 

location and shape of facial landmarks. Their models include three CNN layers, a fully connected layer with 

Relu activation, and an output layer using the L2SVM activation method. Data augmentation techniques 

such as mirroring, rotating, zooming, and random photo rearrangement were incorporated to enhance their 

results and this approach attained a FER2013 accuracy of 67.21%. 

 

The RAF-DB dataset, which we also use in this study, has been used in several studies. For example, 

Li et al., (2017) proposed an approach that introduced a new deep locality-preserving CNN (DLP-CNN) 

algorithm designed to maximize inter-class scatters while preserving locality closeness to enhance the 

discriminative ability of deep features, which achieved an accuracy of 74.2% in RAF-DB.  

 

Li, Yong, et al., (2018) introduced an innovative CNN with an attention mechanism (ACNN) 

designed to detect occluded parts of the human face and emphasize relevant unclouded regions. ACNN uses 

adaptive weights based on importance and unobstructedness in different facial regions, offering two 

variants, gACNN (global-local-based ACNN) and pACNN (patch-based ACNN), to consider various 

regions of interest. The gACNN variant achieved the highest accuracy of 85.07% on the RAF database by 

integrating global and local representations.  

 

Wang et al., (2020) presented a region attention network (RAN) to adaptively assess the significance 

of facial areas for emotion recognition, particularly occlusion and position variations. By aggregating area 

features and employing a region-biased loss, they achieved a notable accuracy of 86.90% on the RAF-DB 

dataset, showcasing the effectiveness of their RAN model in the FER2013 dataset. 

 

3. METHODS 
3.1 Datasets 

 

In our experimental study, we used two distinct datasets (FER2013 and RAF-DB), to train and test models 

to categorize facial emotions into anger, disgust, fear, happiness, sadness, surprise, and neutrality. The 

FER2013 dataset consists of grayscale face images, each measuring 48x48 pixels. These images are 

automatically aligned, ensuring that each face is roughly centered and occupies a consistent portion of the 

frame. The dataset contains 7,178 examples in the test set and 28,709 examples in the training set. The 

objective was to categorize each face into one of seven emotion classes based on the emotion it expresses. 

 

 The RAF-DB dataset contains 29,672 real-world facial photos with annotations for simple and 

complex expressions. In our study, we specifically used a subset of 12,271 images labeled with fundamental 

emotions for the training portion of our research and 3,008 images as test data. 
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 The proposed approach framework is presented in Figure 1. The FER2013 and RAF-DB open-

source datasets were used by applying the same pipeline for each data independently. Firstly, the datasets 

were loaded and split into validation and training sets and the test set was given in each dataset. A robust 

data loader read the dataset and shuffled it when it was required for training. Different pipelines for 

augmentation techniques were used to explore the training datasets and decrease the risk of overfitting. 

Here, we describe the augmentation pipeline and provide practical studies of the application of each 

hyperparameter we used. 

 

3.2 Deep learning approaches and CNN architectures 

 

To obtain a robust model that could achieve reasonable accuracy, different deep-learning models were 

employed: CNN as a base model, ResNet18 (He et al., 2016), VGGNet16 and VGGNet19 (Simonyan & 

Zisserman, 2014), and EfficientNet-B0 (Tan & Le, 2019). Furthermore, we created our own baseline model 

to serve as a reference for future development and to investigate the effect of transfer learning and the use 

of widely used deep-learning architectures.  

 

 CNNs are sufficient models for various applications (Wayman et al., 2005; Minaee et al., 2019; 

Yang et al., 2016). VGGNet and Inception models (Szegedy, 2017) showed that raising the network depth 

increases the quality of model architecture, allowing it to learn faster. By managing the distribution of each 

layer input, batch normalization (Ioffe et al., 2017) provided learning stability in deep networks and 

generated more reasonable optimization surfaces. ResNet models (He, Zhang, 2016) showed that identity-

based skip connections enabled them to train deeper and more robust networks. The proposed approach 

framework is presented in Figure 1.  

 

 The VGGNet16 model scored 92.7% on the top 5 criteria in ImageNet competition, a database with 

more than 14,000,000 images separated into 1,000 classes. This was one of the most common models 

submitted to the ILSVRC-2014 competition. It improves the AlexNet model by sequentially replacing 

several 1x1 and 5x5, or 3x3 kernel-sized filters with smaller 3x3 kernel-sized filters in the initial and second 

CNN layers. The NVIDIA Titan Black GPUs were used for the weeks-long training of VGGNet16. Figure 

2 presents the architecture of VGGNet16. The input was an RGB image with a defined size of 224x224, 

which serves as the Cov1 layer’s input. The image was run through a stack of CNN layers constructed of a 

3x3 kernel size, which is the most suitable size to capture the concepts of each side and center on the input 

image. The 1x1 CNN layers might be considered the linear transformation of the input channels. The 3x3 

CNN layer’s spatial padding ensured that the pixel size was preserved after CNN. The padding was 1 pixel, 

and the stride was also 1 pixel. Furthermore, spatial pooling used max-pooling layers with a 2x2 kernel, and 

the stride was set to 2. 

 

Two open-source datasets, FER2013 and RAF-DB, were used for this study. We applied the same 

pipeline for each data set independently. In this study, we applied multiple deep-learning architectures, such 

as ResNet, EfficientNet-B0, and VGGNet.  
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Figure 1: Pipeline framework 

 
 After the stack of CNN layers, which have varying depths in different designs, there are three fully 

connected layers; the first two consist of 4,096 neurons, while the third consists of 1,000 neurons for label 

classification; therefore, has 1,000 neurons representing the number of classes. The softmax layer was the 

last layer in the model that outputs a probability range from 0 to 1. Figure 3 shows an overview of the 

VGGNet19 architecture, a CNN used for image classification. VGGNet19 comprises 19 layers, including 

16 convolutional layers and three fully connected layers. The convolutional layers are arranged in groups 

of two or three, with max-pooling layers in between. VGGNet19 has a very deep architecture, allowing it 

to capture complex image features. The figure highlights the input and output sizes of each layer in the 

network and the number of filters and kernel sizes used in each convolutional layer. Overall, VGGNet19 is 

a robust CNN architecture that has been used in a wide range of computer vision tasks. 
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Figure 2: Overview of VGGNet16 architecture 
 

3.3 Data augmentation 

 

Data augmentation methods alter the training data to modify the image pixel representation while keeping 

the label the same as before. Various methods can be used for augmentation, such as horizontal and vertical 

flips, color hiccups, random crops, translations, rotations, and many other frequently used augmentations. 

We were able to double and enlarge our training examples and build a more robust model by applying only 

a few of these training changes that could notably improve our results. Examples of data augmentation with 

parameter ranges are listed as follows: 
 

1) Random resize crop: This method is part of the “torchvision.transforms” module. It crops a random area 

of an image and resizes it to a given size. This method can accept both PIL image and tensor images. 

The tensor image is a PyTorch tensor with [C, H, W] shape, where C represents the number of channels, 

and H and W represent the height and width. The method returns a randomly cropped image. Here, we 

used the scale (0.8 and 1.2), meaning the image was zoomed in by 80% and zoomed out 120%, while 

keeping the original size (48x48). 
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Figure 3: Overview of VGGNet19 architecture 

 

2) Adjust brightness: We randomly changed an image’s brightness, contrast, and saturation. We used 

brightness=0.5, contrast=0.5, and saturation=0.5, with 50% probability (p=0.5). 

3) Random affine: the approach accommodates both PIL and tensor images. The tensor image is a PyTorch 

tensor with [C, H, W] shape, where C represents the number of channels and H and W represents the 

height and width. This method returns the affine transformed image of the input image. We used 0, 

translate=(0.2, 0.2), with 50% probability (p=0.5). 

 

4) Horizontal flip: Also known as image mirroring, this is a transformation that swaps the left and right 

sides of the image, creating a mirror image effect with a 50% probability. 

 
5) Random rotation ranges from [-45,45] degrees. 

 
6) Tencrop: After all the aforementioned transforms are applied, this method takes the image and returns 

a tuple of 10 cropped PIL or tensor images. We used (40,40) crop dimensions. 

 
7) Normalization: This is a good practice when using DNNs. Normalizing the images means changing the 

images to have a mean (0.0) and standard deviation (1.0) for each channel. This helps ensure that the 

input data has a similar scale and distribution, which can improve the model’s performance. The 

“torchvision.transforms.Normalize()” method can be used to normalize the images in PyTorch. This 

method takes each channel’s mean and standard deviation values as inputs and returns a normalized 

tensor image.  

 
8) Random erasing: A “torch.Tensor” image has its pixels erased in a rectangular region that is chosen 

randomly. We used a 50% probability. 

 For example, we applied small ranges of these parameters to be compatible with real-life images in 

training. It is important to note that this advanced data augmentation pipeline provided the model with a 

comprehensive learning experience, enabling it to grasp nuanced features and intricacies within the data. 

We enhanced the model’s adaptability and ability to make accurate predictions across various real-world 

scenarios by continually refining and optimizing the data augmentation strategies. The augmentation results 

are illustrated in Figures 4 and 5, showcasing the effects of our augmentation pipeline on the FER2013 and 

RAF-DB datasets. The left images depict the original samples before augmentation, while the corresponding 

right images show the same examples after applying our augmentation pipeline.  
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Figure 4: FER2013 dataset before and after applying our augmentation pipeline 

 

 
 

Figure 5: RAF-DB dataset before and after applying our augmentation pipeline 
 
 

4. RESULTS AND DISCUSSION 

 
4.1 Baseline model 

 

We developed our baseline model to serve as a reference for future development and to investigate the effect 

of transfer learning on subsequent deep-learning models. The confusion matrix of the baseline model is 

presented in Figure 6.a. We calculated the precision, recall, and F1-score of the baseline model for each 

label independently in Table 1. This provides insight into how the model performed on unseen data and 

where the labels had the most errors. It also allows us to gauge the complexity of the problem at hand. It 

highlights the significance of leveraging transfer learning and employing more intricate models on the test 

dataset to enhance its ability to memorize it more effectively. 
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Table 1: Classification report of the baseline model 
 

Label Precision Recall F1-score 

Angry 0.56 0.50 0.53 

Disgust 0.48 0.41 0.44 

Fear 0.47 0.34 0.39 

Happy 0.80 0.83 0.82 

Neutral 0.51 0.66 0.57 

Sad 0.50 0.48 0.49 

Surprise 0.72 0.73 0.72 

 

4.2 EfficientNet-B0  

 

To better understand the performance of the efficient model on the FER2013 and RAF-DB datasets, various 

metrics were analyzed, including the confusion matrix, normalized confusion matrix, precision, recall, and 

F1-score for each label. The normalized confusion matrix is the confusion matrix divided by the number of 

images per label to calculate the error distribution in percent as in Figure 6.b, which shows the confusion 

matrix and normalized confusion matrix of the efficient model on the FER2013 dataset. The happy (84%) 

and surprise (79%) labels showed the best accuracy. The model did get confused about the four labels: fear, 

angry, neutral, and sad, which had the highest error percentage. Table 2 shows the classification report of 

the model. Furthermore, the number of images that contributed to that result, which provides more intuition 

about how our efficient model performs on FER2013, is presented. The surprise label received a 0.78 F1-

score even if it did not have more images as with neutral and sad images. Figure 7 shows the confusion 

matrix and normalized confusion matrix of the EfficientNet-B0 model of the RAF-DB test set. RAF-DB 

had a more robust error distribution because the data has an RGB image with a size of 100x100, enabling 

the model to capture more information about the data. Table 3 shows the classification report of RAF-DB, 

which achieved 84.547% accuracy on the test set. The model predicted happy images accurately with a 0.93 

F1-score, which was due to the data having many happy examples that enabled the model to predict this 

label more accurately. Also, the three labels, surprise, sad, and neutral, are above the 0.8 F1 metric score. 
    

 

(a)                                                                                        (b)           
 

Figure 6: Results for the (a) confusion matrix baseline model and (b) confusion matrix and normalized confusion 

matrix EfficientNet-B0 on FER2013 
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Table 2. Classification report of the EfficientNet-B0 model on FER2013 
 

Label Precision Recall F1-score Images (n) 

Surprise 0.79 0.77 0.78 831 

Fear 0.58 0.51 0.54 1024 

Angry 0.59 0.57 0.58 958 

Neutral 0.59 0.66 0.62 1233 

Sad 0.55 0.53 0.54 1247 

Disgust 0.68 0.66 0.67 111 

Happy 0.84 0.87 0.85 1764 

Accuracy - - 67.09% 7178 

 

Table 3: Classification report of the EfficientNet-B0 model on RAF-DB  
 

Label Precision Recall F1-score Images (n) 

Surprise 0.86 0.81 0.83 329 

Fear 0.66 0.62 0.64 74 

Disgust 0.65 0.48 0.55 160 

Happy 0.92 0.94 0.93 1185 

Sad 0.82 0.83 0.83 478 

Angry 0.76 0.74 0.75 162 

Neutral 0.78 0.84 0.81 620 

Accuracy - - 84.547% 3008 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

Figure 7: Confusion matrix and normalized confusion matrix EfficientNet-B0 on RAF-DB 
 

4.3 ResNet18 

 

The model was evaluated to gain a better understanding of how the model performs on the test set. For each 

dataset, the confusion matrix and normalized confusion matrix were computed. A classification report was 

also generated that shows the precision, recall, and F1-score for each of the seven labels. The model 

predicted the happy and surprise labels with 86% and 80% accuracy, respectively. The ResNet18 model 

also reduced the error on the disgusting label and achieved 78% accuracy. The error was high on sad and 

fear labels; also, the model was confused between both labels. Table 4 gives the classification report of the 

model on the FER2013 dataset. The model achieved a total accuracy of 68.07% on the test set; we observed 

that the F1-score per each label increased compared with the EfficientNet model. Figure 8 shows the 

confusion matrix and normalized confusion matrix of the ResNet18 model on the RAF-DB test set. We 

observed that the model was more robust on this dataset and could reach a reasonable accuracy compared 

to studies in the literature. 



11 

 
Table 4: Classification report of the ResNet18 model on FER2013 

 

Label Precision Recall F1-score Images (n) 

Surprise 0.80 0.80 0.80 831 

Fear 0.54 0.47 0.50 1024 

Angry 0.62 0.61 0.61 958 

Neutral 0.61 0.66 0.63 1233 

Sad 0.55 0.56 0.55 1247 

Disgust 0.78 0.66 0.71 111 

Happy 0.86 0.87 0.87 1764 

Accuracy - - 68.07% 7178 

 

 Table 5 details how our model performed on the RAF-DB test set; it shows the precision, recall, 

and F1-score per each label of the seven basic emotions. The model achieved a test accuracy of 86.02% and 

a 0.94 F1-score for the happy label, and also gets above 0.80 on four labels: surprise, sad, angry, and neutral. 
Figure 8 shows the confusion matrix and normalized confusion matrix of the ResNet18 model in the RAF-

DB dataset. 

 

Table 5: Classification report of the ResNet18 model on RAF-DB 
 

Label Precision Recall F1-score Images (n) 

Surprise 0.86 0.84 0.85 329 

Fear 0.67 0.61 0.64 74 

Disgust 0.71 0.59 0.65 160 

Happy 0.93 0.94 0.94 1185 

Sad 0.84 0.85 0.84 478 

Angry 0.82 0.78 0.80 162 

Neutral 0.80 0.85 0.82 620 

Accuracy - - 86.02% 3008 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: Confusion matrix and normalized confusion matrix ResNet18 on the RAF-DB 
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4.4 VGGNet16  

 
 

The VGGNet16 model was evaluated on the test set, but with added customization layers to this model. 

Firstly, we changed the last average pooling layer output size from (7,7) to (1,1), meaning we used global 

average pooling instead. Furthermore, changing the top layer to have seven output neurons to represent our 

seven classes determined the confusion matrix and normalized confusion matrix. The VGGNet16 model 

achieved appropriate results with the FER2013 dataset, with a 70.2% test accuracy. VGGNet’s original 

model has 138,000,000 parameters, and this number was too big compared with other models, and the 

complexity was too high, but the customization we added reduced the number of parameters to 33,600,000 

parameters, which was more viable. Figure 9 shows the model's confusion matrix and normalized confusion 

matrix on the FER2013 test set. The VGG16 model reduced the error on all labels compared with other 

models based on the diagonal of the VGGNet confusion matrix. Table 6 shows the precision, recall, and F1 

scores for all labels and the number of images per label that contributed to the calculated metrics. The F1-

score of each label increased and the overall accuracy on the test set was 70.2%. We also show the confusion 

matrix and normalized confusion matrix of the VGGNet16 model on the RAF-DB in Figure 10. The 

ResNet18 model achieves the best result on this dataset, but since the VGGNet16 model achieves 85.88% 

while ResNet18 gets 86.02%, the difference in accuracy was not great; however, it is important to note that 

the VGGNet16 model had more parameters, and its complexity was too high. Table 7 shows more details 

about how the VGGNet16 model performed on each label. 

 

Table 6: Classification report of the VGGNet16 model on FER2013 
 

Label Precision Recall F1-score Images (n) 

surprise 0.82 0.81 0.82 831 

fear 0.56 0.52 0.54 1024 

angry 0.64 0.62 0.63 958 

neutral 0.64 0.70 0.67 1233 

sad 0.57 0.57 0.57 1247 

disgust 0.85 0.68 0.75 111 

happy 0.88 0.90 0.89 1764 

Accuracy - - 70.2% 7178 
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Figure 9: Confusion matrix and normalized confusion matrix VGGNet16 on FER2013 

 

Table 7: Classification report of the VGGNet16 model on RAF-DB 
 

Label Precision Recall F1-score Images (n) 

Surprise 0.86 0.85 0.85 329 

Fear 0.64 0.57 0.60 74 

Disgust 0.59 0.57 0.58 160 

Happy 0.94 0.95 0.95 1185 

Sad 0.83 0.82 0.83 478 

Angry 0.80 0.75 0.78 162 

Neutral 0.81 0.84 0.83 620 

Accuracy - - 85.88% 3008 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 10: Confusion matrix and normalized confusion matrix of the VGGNet16 model on RAF-DB  
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4.5 VGGNet19  
 

The VGGNet19 model was evaluated on the test set. Firstly, we changed the last average pooling layer 

output size from (7,7) to (1, 1), meaning that we used global average pooling instead. Also, the top layer 

was changed to have seven output neurons to represent our seven classes. This customization led to a 

reduction in the number of parameters that exceed 138,000,000 parameters to just 45,200,000 parameters.  

 

The VGGNet19 model achieved the best result for the FER2013 dataset; it achieved a 71.02% test accuracy. 

The model reduced the error on all labels compared with the other models, which we observed by comparing 

the diagonal of the VGGNet19 confusion matrix with the other models. We found that the F1-score of each 

label increased, and that the overall accuracy on the test set was 71.02% (Table 8). Table 9 provides more 

information on how the VGGNet19 model performed on each label. 

 
Table 8: Classification report of the VGGNet19 model FER2013 

 

Label Precision Recall F1-score Images (n) 

surprise 0.84 0.79 0.82 831 

fear 0.57 0.59 0.58 1024 

angry 0.61 0.64 0.63 958 

neutral 0.68 0.67 0.67 1233 

sad 0.59 0.57 0.58 1247 

disgust 0.69 0.72 0.70 111 

happy 0.89 0.90 0.89 1764 

Accuracy - - 71.02% 7178 

 

 

Table 9: Classification report of the VGGNet19 model on RAF-DB  
 

Label Precision Recall F1-score Images (n) 

Surprise 0.87 0.83 0.85 329 

Fear 0.77 0.50 0.61 74 

Disgust 0.66 0.62 0.64 160 

Happy 0.92 0.95 0.94 1185 

Sad 0.84 0.83 0.83 478 

Angry 0.87 0.77 0.82 162 

Neutral 0.81 0.85 0.83 620 

Accuracy - - 85.87% 3008 
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4.6 Model comparisons 

 

Here we compare the results of all models based on test accuracy. Four different deep CNN architectures 

were used: ResNet18, EfficientNet-B0, VGGNet16, and VGGNet19 to test the FER2013 dataset. The 

accuracies of these deep learning approaches were promising and was further validated on the RAF-DB 

dataset. Table 10 shows the overall results of all models on the FER2013 dataset. The deep learning models 

had the best accuracy compared with the baseline model. VGGNet19 achieved the highest accuracy 

(71.02%) for FER2013. However, the number of model parameters and the model’s complexity should be 

considered. Table 11 presents the overall results on RAF-DB; based on the FER2013 results, we find that 

the three deep learning models are promising for solving the problem of emotion recognition; therefore, we 

only used these deep learning models on the RAF-DB. The ResNet18 model achieved the best accuracy 

(86.02%) for this dataset. 

 
Table 10: All model test results for FER2013 

 

Model Test Accuracy Num. of Parameters 

Base Line 60.854% 1,672,775 

EfficientNet-B0 67.09% 4,016,515 

ResNet18 68.07% 11,180,103 

VGGNet16 70.20% 33,625,927 

VGGNet19 71.02% 45,227,079 

  

Table 11: All model test results for RAF-DB  
 

Model Test Accuracy Num. of Parameters 

EfficientNet-B0 84.55% 4,016,515 

ResNet18 86.02% 11,180,103 

VGGNet16 85.88% 33,625,927 

VGGNet19 85.87% 45,227,079 

 

4.7 Study robustness 

 

To confirm the robustness of our approach, we applied our pipeline to two datasets. Furthermore, we avoided 

depending solely on a single algorithm to solve the problem and instead explored different approaches and 

models, aiming to develop resilient models that accurately represents our study. To acquire the model’s 

hyperparameters and training augmentation pipeline, we performed an exhaustive search between various 

pipelines to find robust hyperparameters that gave us the best result representative of each model 

independently. We ensured the robustness of our approach by applying our pipeline to two open source 

datasets. By comparing our results with published data, our model displayed better performance and achieve 

better results on the datasets. Tables 12 and 13 compare our best results with different state-of-the-art model 

that have been previously applied to both datasets. The accuracy of VGGNet19 on FER2013 and ResNet18 

on RAF-DB outperform all other models. Some researchers depend on multiple datasets to merge them and 

construct one bigger dataset; however, in our study we relied only on each dataset independently. The 

customization layers we used for each model decreased the number of parameters of the models, and the 

inference time also increased compared with the published models. 

 

 

 

 

 

 



 

 

16 

Table 12: Comparison of models used to test on FER2013  
 

Models Accuracy for test set 

Devries et al.  67.21% 

Zhang et al.  70.60% 

Ours (VGGNet19) 71.02% 

 

Table 13: Comparison of models used to test on RAF-DB  
 

Models Accuracy for test set 

gACNN  85.07% 

DLP-CNN 74.20% 

Ours (ResNet18) 86.02% 

 

 

6. CONCLUSION 
 

In this study, we have independently assessed each model’s strengths and weaknesses and performed a 

comprehensive comparison to offer concise discussions and distinctions among them. Moreover, we have 

shown that CNN architectures such as ResNet, EfficientNet, and VGGNet models can achieve good results 

for emotion recognition using different adjustments. These considerations should be taken into account for 

future enhancements in this study. The models were evaluated on the test sets to gain a better understanding 

of how they work when dealing with unobserved data. For each dataset, the confusion matrix and normalized 

confusion matrix were computed. On the FER2013 dataset, the VGGNet19 model produced the best results, 

scoring a test accuracy of 70.2%. The 138,000,000 parameters in the original VGGNet model make it overly 

complex and large compared with other models; however, the customization we added reduced the number 

of parameters to 33,600,000 M, which was more efficient. The CNN was used on the FER2013 test set and 

studies of the residual learning blocks have been shown to increase the performance of deep learning models. 

We selected the number of layers and neurons based on our intuition of applying CNNs for different 

datasets. We used trial-and-error to determine the best learning rate and scheduler. Our proposed model can 

be combined with other models to increase the accuracy of face recognition systems that use the FER2013 

dataset because it is computationally less expensive. Although the FER2013 dataset is very complicated, 

with a small number of samples in some classes, the number of samples in each class can be increased by 

the correct amount to improve accuracy. To solve the problem, we used transfer learning techniques to 

retrain VGGNet16, VGGNet19, ResNet18, and EfficientNet-B0 on two open sources of datasets, FER2013 

and RAF-DB. Using pre-trained deep CNN architectures showed great performance with these datasets. 

The VGGNet19 model performed the best on FER2013 with added customization layers. We changed the 

last average pooling layer output size from (7,7) to (1,1), to use global average pooling. Furthermore, we 

changed the top layer to have seven output neurons representing the seven classes. We also significantly 

reduced the number of VGGNet’s original parameters by approximately 60%, which substantially improved 

the performance. ResNet18 outperformed all other models with 86.02% accuracy on the RAF-DB dataset. 

In this study, different CNN models applied in studies on the problem of emotion classification from facial 

expressions were comprehensively analyzed and the effectiveness of the models for realizing effective 

approaches in this field was presented with their advantages. 
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