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ABSTRACT 
 

        Biometrics effect our live. Security applications employ biometrics. Biometric encryption is growing. 

Encryption requires biometric key creation. Long, random, and unexpected is the key. Information and 

communication security research emphasizes long, strong encryption keys. The proposed system uses 

fingerprint biometrics to generate a long, random biometric encryption key for symmetric encryption. Pre-

processing removed noise from donor fingerprint images in the dataset. The program then trains an 

updateable Tuned VGG-16 convolutional neural network model and tests it on fingerprint images to learn 

fundamental fingerprint properties. The convolutional neural netwoprk CNN model retains the final weights 

for the second model to extract encryption key features. Transfer learning built a second convolutional 

neural network model to retrieve features without relearning. Keeping vector mean for processing. The last 

step generates an encryption key based on each person's vector of unique biometric features can be used for 

symmetric encryption algorithms to encrypt personal documents on the personal PC or personal cloud. Our 

CNN based method uses biometrics to recognize people and create safe and trustworthy encryption keys 

with over 99% accuracy in testing. Our 98%-accurate deep ANN classifier exceeds the support vector 

machine and random forest classifiers. 

 

Keywords: Biometrics; Fingerprint; CNN Model; Transfer Learning; Key Generation. 
 

RESUMEN 
 

La biometría afecta nuestra vida. Las aplicaciones de seguridad emplean biometría. El cifrado biométrico 

está creciendo. El cifrado requiere la creación de una clave biométrica. Largo, aleatorio e inesperado es la 

clave. La investigación sobre seguridad de la información y las comunicaciones hace hincapié en claves de 

cifrado largas y sólidas. El sistema propuesto utiliza biometría de huellas dactilares para generar una clave 

de cifrado biométrica aleatoria larga para el cifrado simétrico. El preprocesamiento eliminó el ruido de las 

imágenes de huellas dactilares de los donantes en el conjunto de datos. Luego, el programa entrena un 

modelo de red neuronal convolucional Tuned VGG-16 actualizable y lo prueba en imágenes de huellas 

dactilares para conocer las propiedades fundamentales de las huellas dactilares. El modelo CNN de red 

neuronal convolucional conserva los pesos finales para que el segundo modelo extraiga las características 
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clave de cifrado. El aprendizaje por transferencia construyó un segundo modelo de red neuronal 

convolucional para recuperar características sin volver a aprender. Mantener la media vectorial para el 

procesamiento. El último paso genera una clave de cifrado basada en el vector de características biométricas 

únicas de cada persona que se puede utilizar para algoritmos de cifrado simétrico para cifrar documentos 

personales en la PC personal o en la nube personal. Nuestro método basado en CNN utiliza datos 

biométricos para reconocer a las personas y crear claves de cifrado seguras y confiables con más del 99 % 

de precisión en las pruebas. Nuestro clasificador ANN profundo con una precisión del 98% supera la 

máquina de vectores de soporte y los clasificadores de bosque aleatorios. 

 

Palabras claves: Biometría; Huella dactilar; Modelo CNN; Transferir Aprendizaje; Generación de claves. 

 
1. INTRODUCTION 

 

       Biometrics is the analyzing the properties of human (physical and/or behavioral) to identity in a fast 

and reliable manner by using of unique biological properties. Applications that have traditionally made use 

of biometrics include military access control, criminal or civil identity, and technological framework. These 

days, banking, shopping, and buying things online through a mobile device are all part of the same 

transaction. One of the most popular biometrics is a person's fingerprint. It can be specified by a visual 

progression of ridges on human fingers as they develop in infancy. Researchers have shown that no two 

fingerprints are ever exactly the same (Elhoseny et al., 2018). Identification and verification accuracy are 

quality-sensitive. Noise makes fingerprint pictures blurry. Scars, skin flaws, dampness, filth, and uneven 

fingerprint reader contact may all contribute. Hence, picture enhancement approaches increase structure and 

reduce noise. (Chakravarthy et al., 2017; Schuch et al., 2018). The large intra-class differences (differences 

across images of the same finger) and huge inter-class similarities in fingerprint matching create a pattern-

recognition problem (similarity problem). Dry skin, incisions, pressure, rotation, and translation of the 

scanners can cause class differences. There are just a few fingerprint patterns—whorl, loop, and arch—but 

groups may share them. Fingerprint matching algorithms compare objects, skeletons, phases, or fine details 

(Jain et al., 2010). Precise matching algorithms are increasingly used. Local and global minutia-based 

matching algorithms exist (Mehmandoust & Shahbahrami, 2011; Peralta et al., 2015). 

              Key generation systems use biometrics to generate cryptographic keys. This research examines 

key-making processes. Hence, biometric cryptographic key generation alternatives are discussed. (Zaki, 

2015), in this study created a fingerprint-based key to secure the system. This method has two parts: The 

first is 512 numeric values from EPROM fingerprint data enhanced, binarized, and thinned. With an 8x64 

EPROM array, the first three linear shift registers supply the row address, while the second through seventh 

registers provide the column address. (Barman et al., 2015) use a mutually cancellable fingerprint template 

to generate cryptographic keys in 2015. Key-based steganographic exchanges can safely send cancellable 

fingerprint templates. They combine the two templates using concatenation-based feature-level fusion. The 

shuffle key randomly shuffles the combined template components to generate a new session key. 

Cancellable fingerprint template change provides fingerprint privacy while creating symmetric 

cryptography revocable keys. 

               (Partheeba & Radha, 2016) created orientation confidence level to assess fingerprint quality 

(OCL). If the picture quality is good, Scale Invariant Feature Transform (SIFT) extracts features. Otherwise, 

the image is ignored. Cover images may hide the cancelable template. Afterwards, Variable Least 

Significant Bit (VLSB) techniques will convey the hidden picture from sender to receiver and back. 

(Sanghvi & Mangrulkar, 2023) guarantees key unicity with fingerprints and adds unpredictability with 

fingerprint combinations. In this study, the key matrix is generated by extracting minute features from the 

sender and recipient's fingerprints using their combined minute detail template. This system has four stages. 

Enrolment, Authentication, Key Creation, and Cryptography. (Sarkar & Singh, 2018) offer a method for 

creating a 128-bit symmetric key from a cancelable fingerprint template shared by sender and recipient. 

This solution avoids key storage and distribution and confirms fingerprint privacy by one-way changing the 
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original template into a cancelable one. No one receives or stores the key. The first method applied to the 

data points yielded nullifiable template values for both sender and receiver. 

           (Panchal & Samanta, 2018) introduced a novel data safety technique in 2018. This approach 

generates a codeword using biometric statistical data. Reed-Solomon encodes random codewords. This 

password will create a key later. Before decryption, they check the user's identification using an SVM 

Ranking algorithm with no cutoff value. (Abed et al., 2019), a backpropagation neural network is used to 

encrypt/decrypt data without storing it using a bio-crypto key created via transparent biometrics. Due to 

background noise, transparent biometric modalities like fingerprints, faces, and keystrokes are difficult to 

use to create repeatable bio-crypto keys. (Suresh et al., 2020) used points collected at regular intervals, 

distances computed using Euclidean geometry, sorted by value, and converted to grayscale sequencing. 

Keys from gray codes. To reduce key discrepancy from duplicate fingerprints, the suggested method uses 

gray code. This research will focus on selecting minutiae points and adding an error correcting algorithm to 

produce a reliable cryptographic key. 

             (Wang et al., 2021) used fingerprints with feature distance as biometric keys. By measuring 

fingerprint details, they create a unique bio-key. The generation interval method determines and recovers 

bio-keys. They use two-layer error correction to protect sent data. (Barzut et al., 2021) presented a biometric 

fingerprint cryptosystem using convolutional neural networks and fuzzy commitment for authentication. By 

translating them into binary, they created a biometric cryptosystem for key-release systems and fingerprint 

matching biometric systems. Secure block-level Bose-Chaudhuri-Hocquenghem (BCH) error correction 

codes, immune to statistical-based attacks, reduce biometric data variability. (Wu et al., 2022) proposed a 

three-tiered fingerprint bio-key production architecture with a fingerprint biometry preprocessor, an FPBK 

stabilizer, and a fuzzy extractor. Deep neural network feature selection and layer-by-layer convolution 

projection eliminate fingerprint sample fluctuation in the FPBK Stabilizer. A multilayer convolutional 

projection fingerprint bio-key generation model is also created. Generating fingerprint keys from a 100-

person fingerprint library tested the proposed framework. The proposed framework generated high-strength, 

stable, and resilient fingerprint bio-keys with a 98.0% accuracy rate (at 1024 bits) and a misrecognition rate 

of less than 1.5%. 

               (Suresh et al., 2022) proposed generating the key pair using fingerprint biometrics and a password. 

They use gray code to turn fingerprint minutiae gaps into a reliable binary string. Experimentally, gray code 

encoding reduces discrepancies between bit strings created from two fingerprint occurrences. Thus, the 

Reed-Solomon error correction algorithm corrects fingerprint duplicate differences to produce more 

consistent output. XORing the fingerprint and password hashes yields a safe seed. The recommended 

approach generates two enormous prime numbers from this seed value. These prime numbers produce a 

public-private key pair using the RSA key creation procedure. This seed value generates the same key pair 

every time.    

               As a problem statement, accurate fingerprint image processing relies on the detection of fingerprint 

image pixels. Low-quality fingerprint images often lack well defined image structures, making it impossible 

to accurately identify characteristics. Large localization errors in the location and orientation of minutiae 

pixels may be created, leading to the detection of many false minutiae pixels and the possible disregard of 

real minutiae pixels. The variant and unstable nature of fingerprint image due to scanner device or other 

source of noises may effect on the fingerprint features detection. The research introduced a framework to 

deal with these problems that may effect on best detection and extraction of fingerprint features to generate 

unique and reliable key from fingerprint image.  

 
2. PROPOSED SYSTEM  

Our proposed system deals with the fingerprints of ordinary people in order to generate encryption 

keys based on biometrics. Initially, the fingerprint has to go through a pre-processing stage, which reduces 

noise, blur and other problems caused by poor quality. The preprocessing stage also deals with issues such 

as alignment, rotation resulting from the individual's handling of the scanner. After the completion of the 

first stage (the pre-processing stage), a version of the enhanced fingerprint is entered into the second stage, 
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which is the stage of training the proposed model on the fingerprints of several people and according to their 

classes.  

After completing the training process and obtaining the desired results, the model is tested and its 

efficiency verified. The Tuned VGG-16 model of convolutional neural networks was used for this purpose. 

Our proposed system exploits the transferability of learning from one convolutional model to another in 

order to distinguish the fingerprint classes according to their distinctive features. An artificial neural network 

(ANN) was used to classify each fingerprint according to its class. At this point, the third stage begins where 

the encryption key is generated by dealing with vectors generated from the convolutional model during the 

learning process. These vectors belong to the fingerprint classes that were trained in the previous stage. A 

set of normalization steps performed on vectors to suit the capabilities of generating cryptographic keys in 

a secure and reliable manner. After generating a biometric encryption key, the required documents and files 

are encrypted with a secure encryption system. 

 

2.1. Components of the Proposed System 

      There are four major components of the proposed system: 

1. Preprocessing component which performs image enhancement stage and contains sub stages such as 

dataset images filtering, normalization, resizing and augmentation. 

2. Training and testing component which consists of sub stages such as building the proposed deep 

learning model of CNN, training, testing and saving weights for further processing. 

3. Transfer learning Component which transfers learning from one model to another by loading the pre-

trained model with the previously saved weights.  

4. Feature extraction and mean vector generation component which is responsible for extraction of features 

of fingerprint from feature map and then generate the mean vector of each class which led to key 

generation stage. 

5. Key generation stage. 

 

Figure 1 depicts the block diagram of the components of the system. 

 

 
 

Figure 1. Components of the Proposed System 
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2.2. Preprocessing Stage    

The first stage in the system is preprocessing which consists of two steps as follows:  

 

2.2.1. Fingerprint Image Normalization   

        In order to create a uniform fingerprint image, the pixel intensity levels are normalized to fall within a 

predetermined range of grayscale values. The image contrast and brightness are improved by the 

normalization process, and scanner device noise is eliminated along with changes in grayscale levels caused 

by variances in finger pressure. This procedure is a pixel-by-pixel operation that does not alter fingerprint 

structures and simplifies subsequent calculations (Patel et al., 2020). During normalization process, a new 

value of pixel intensity is assigned to each pixel in the image. It's a pixel-by-pixel adjustment that doesn't 

affect the sharpness of the hills and valleys. As can be seen in the provided equations, the major goal of this 

technique is to lessen the range of grayscale values along the ridge and valley (Iwasokun et al., 2012):  

 

𝑁(𝑖, 𝑗) =  

{
 

 𝑀0 + √
𝑣0(𝐼(𝑖,𝑗)−𝑀)

2

𝑉

𝑀0 − √
𝑣0(𝐼(𝑖,𝑗)−𝑀)

2

𝑉

                                                                                                   (1)  

Where,  

 𝑀 = 
1

𝑤 𝑥 ℎ
 ∑ ∑  𝐼(𝑖, 𝑗)ℎ−1

𝑗=0
𝑤−1
𝑖=0                                                                                                       (2)  

 𝑉 = 
1

𝑤 𝑥 ℎ
 ∑ ∑  (𝐼(𝑖, 𝑗) − 𝑀)2ℎ−1

𝑗=0
𝑤−1
𝑖=0                                                                                           (3) 

 M and V are the mean and variance of the fingerprint image I (i, j), Mo and Vo are the desired mean and 

variance values. Figure 2 depicts the normalization operation on the fingerprint image.    

 
Figure 2. Fingerprint (a) Before Normalization (b) After Normalization 

 

2.2.2. Gabor Image Filtering  

        The (WxW) blocks will be filtered using a finely calibrated Gabor filter to increase the contrast of the 

ridges. In the spatial domain, an even-symmetric Gabor filter has the shape described by equation (3). Figure 

3 shows the output of applying normalization and Gabor filter to the fingerprint image. Before applying the 

Gabor filter, the orientation of the (WxW) blocks will be determined based on their position relative to the 

center of each pixel. Fingerprint image enhancement is a very important step where all other steps depend 

on the accuracy of the results from this step (Karo et al., 2019) 

 

 
(a)                           (b) 
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a. Original Fingerprint Image          b.  Enhanced Fingerprint Image 

                               Figure 3. Apply Normalization and Gabor Filter on a Fingerprint Image  

 

         Gabor filters are formed from two components, sinusoidal and Gaussian. Through the use of a Gabor 

filter, the spatial domain may be linked to the best possible representation of orientation (frequency). In 

1946, Gabor discovered the Gabor function, which he first defined in one dimension (t denoting time) before 

expanding into two dimensions (space) with the help of the following equations (4-6) (Ahmed et al., 2015; 

Karo et al., 2019):  

 

𝐺(𝑥, 𝑦, 𝑓, 𝜃) = 𝐸𝑥𝑝 { 
−1

2
 [
𝑥1
2

𝛿𝑥2
+ 

𝑦1
2

𝛿𝑦2
 ] } cos(2𝜋𝑓𝑥1)                                                                               (4) 

 

𝑋1 = 𝑥 𝑠𝑖𝑛 𝜃 + 𝑦 cos 𝜃                                                                                                                              (5)  

 

𝑌1 = 𝑥 𝑐𝑜𝑠 𝜃 + 𝑦 sin 𝜃                                                                                                                               (6) 

 

       A fixed distance away from the Gaussian characteristics along the x and y axes is denoted by x and y, 

where is the orientation direction, f is the cosine wave frequency, and is the cosine of the angle. 

 

2.3. Training the CNN 

        When training a network, the goal is to discover the kernels in the convolutional layers and the weights 

in the FC layers that result in the smallest discrepancy between the predictions made by the network and the 

ground-truth labels on the training dataset. As the loss function and the gradient descent optimization 

algorithm play crucial roles in the back propagation algorithm, it is the most popular approach for training 

neural networks. Using a loss function and forward propagation on a training dataset, we may estimate how 

well a model will perform with a given combination of kernels and weights; then, using back propagation 

and gradient descent, we can adjust these learnable parameters to improve the model's performance. When 

training a CNN model, it is important to determine which kernels are most effective for a certain task using 

the available training data. In the convolutional layer, the only parameter that is automatically learnt during 

training is the kernel. However, the size of the kernels, the number of kernels, the padding, and the stride 

are all hyperparameters that must be specified before training can begin as shown in Table 1 (Vojt, 2016). 
 

Table 1. CNN's List of Adjustable Settings 

 

CNN Layers Parameters Hyperparameters 

Convolution Kernels Kernel size, number of kernels, stride, padding, activation function. 

Pooling Layer None Pooling method, filter size, stride, padding. 

FC Layer Weights Number of weights, activation functions. 
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Others  Model architecture, optimizer, learning rate, loss function, mini-batch 

size, epochs, weight initialization, dataset splitting.  

 

 

2.4. Transfer Learning Step 

          At this stage of implementation, the weights are transferred from the pre-trained model to the second 

model to extract the features that will be included in the later stage of validation through the ANN model. 

Advantage of the ability is taken to transfer learning from one neural model to another in order to start with 

the stage of extracting features from the new dataset instead of starting the process from scratch. This led to 

an increase in the accuracy of the learning results, and thus the classification and extraction of features, 

which will lead to an increase in the effectiveness of generating a solid key. To create a large-scale model 

with a limited data set, one useful technique is transfer learning and fine-tuning. In most cases, building a 

deep learning model will need a large quantity of data. However, it is not always simple to collect a large 

enough data set for that purpose. As a further caveat, from a training perspective, model creation may 

sometimes be a lengthy process. I know it bothers you when a single training session encompasses the whole 

day. It is possible to employ a fine-tune technique to address this issue in some domains, such as image 

categorization. 

           

2.5. Deep Feature Extraction Stage 

           After some pre-processing, the fingerprint image is delivered to the deep feature extractor model, 

which is utilized to extract the important features that will be used to classify the fingerprint images where 

the extraction of features is a critical stage in the classification of image. The extracted features must be 

robust against variations in fingerprint illumination, alignment, rotation, noise, and other challenges. So, the 

features that are important for the biometric based key generation system must be extracted, and these 

features must contain the information required for discrimination between different persons. The aim of the 

features extraction process is to obtain the most important information from the original data (image). In 

this study, this aim was achieved by using two CNN, VGG-16 Tune.  

             After completing the transfer of the learning weights to the new model type VGG16 and the 

completion of the validation process on the new fingerprint, the features are extracted from the last 

convolutional layer in the VGG16 model, which stores the distinctive features of each fingerprint image as 

a matrix with dimensions (14, 14, 512) of length, width and depth, respectively. If it is assumed that each 

class contains 50 fingerprint images that have been trained on, then 50 matrices of the same aforementioned 

dimensions will be generated. Each Matrix within any class is converted into a one-dimensional vector to 

facilitate future dealing with it. This vector contains 100,352 floating elements whose values are between 

zero and one. The median is calculated for all vectors of a particular class to obtain the so-called Mean-of-

Vectors. 
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Algorithm1: VGG 16 Tune Based Feature Extraction 

Input: Input images  

Output: Feature vector for each image within class 

Begin  

1. Load input images and create an image dataset.  

2. Make image preprocessing step.  

3. Split the dataset into 80% training and 20% test data. 

4. Load the pre-trained VGG16 Tune model (architecture and weights). 

5. Defining the layer from which features are extracted.  

6. Defining the layer from which features are extracted.  

7. While not end of training images set 

            Read an image from training set. 

              Extract training features of the fingerprint image from the layer is last convolutional layer in  

              (block5_conv3).     

              Add extracted feature vector to “TrainingFeatures” vectors. 

              End While  

8. Save training feature vectors as “TrainingFeatures”. 

9. While not end of test images set 

Read an image from test set. 

Extract test features of the fingerprint image from the layer is last convolutional layer in model 

(block5_conv3). 

// The extracted features are a vector with (14, 14, 512) = 100,352. 

Add extracted feature vector to “TestFeatures” vectors. 

End While 

10. Save test feature vectors as “TestFeatures”  

End 
 

 

2.6. Key Generation Stage Algorithm 

        At this stage, several parameters coming from the previous stages are dealt with, namely: the accuracy 

threshold as an output from Deep ANN, the distinguished class number c, in addition to the Mean-of-Vectors 

as a magnitude value which is represented by one dimensional vector of (128). All of these parameters enter 

into the unique key generation stage. The average vector is dealt with in the form of a matrix to facilitate 

the task of mathematical dealing with it, as it is converted to 128 784, and this is what generates 128 rows. 

We will need to normalize these vectors by finding their magnetode value. The values generated by 128 

element values represent a summary of the mean vectors, which in turn represent the feature map of the 

finger image. The key is generated using key derivation functions KDF with SHA256 and salt values.   

 

Algorithm2: Key Generation 

Inputs: Fingerprint Image of Specific Class, Load Mean-of-Vectors  

Outputs: Generated Key   

Begin 
1. Load enhanced fingerprint image. 

2. Load and Run ANN model. 

3. From feature vector of fingerprint image applied to ANN produce predicted class number 

c.  

4. Load class number c and threshold. 

5. By class number load the identical Encrypted Mean-of-Vectors from Encrypted Mean-

of-Vectors Database. 

6. Decrypt Mean-of-Vector. 

7. Transform Seed Vector SV=100,352 elements to the shape (N,M) of (128,784). 
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8. For I = 1 to 128 do 

               Compute the magnitude value for each row as MG(I). 

            Next I 

9. Store one dimensional vector (128,1) as V. 

10. Load key derivation function (V,SHA256,Salt) 

11. Generate Key String K.    

12. Save Key K for Encryption Stage.   

End   

 

3. RESULTS AND DISCUSSION  

         The proposed system was executed using a personal computer with the following specifications: 

firstly, the hardware by a processor Intel(R) Core(TM) i5- with Microsoft Windows 10 (64 bit). Secondly, 

the software tool is by Python implemented on Colab Pro platform produced by Google Cloud. 

 

3.1. Training and Validation 

       In our proposed system, we used the Fine Tuning VGG16 model to train the first dataset on 

fingerprints. The modular system was trained on ImageNet, but we modified the model to meet the 

requirements of our proposed system. The last three layers were trained on the properties of fingerprints 

only so that the model is able to deal with fingerprints only in a strong and customized way. It is also 

known that the basic figures in human fingerprints are the core of the fingerprint as a global figure and the 

ends of the edge and branches as local figures. It is one of the difficult figures in the training process in 

terms of that it has similar features among all human fingerprints and depends on its discovery on accurate 

details such as location and rotation in determining discriminant. Table 2 shows the model summary: 

 
Table 2. CNN model (VGG-16 Tuned) Summary: 

 

Model Parameters No. of Parameters 

Total Number of parameters 14,726,996 

Trainable parameters No. 4,730,900 

Non-trainable parameters No. 9,996,096 

 

Table 3 describes the result (first ten epochs and last ten epochs) of 100 epochs to train this model. 

 
Table 3. Selected twenty epochs from Model Training Report. 

 

Epoch No# Loss Accuracy Val._Loss Val._Accuracy Learning 

Rate 

1/100 1.1970 0.7364 2.8133 0.0924 1.0000e-04 

2/100 0.1873 0.9929 2.5180 0.1681 1.0000e-04 

3/100 0.0793 1.0000 2.2818 0.2773 1.0000e-04 

4/100 0.0485 1.0000 2.0474 0.6134 1.0000e-04 

5/100 0.0340 1.0000 1.8093 0.8992 1.0000e-04 

6/100 0.0268 1.0000 1.5588 0.9748 1.0000e-04 

7/100 0.0214 1.0000 1.2995 0.9958 1.0000e-04 

8/100 0.0166 1.0000 1.0359 0.9958 1.0000e-04 

9/100 0.0142 1.0000 0.7881 1.0000 1.0000e-04 

10/100 0.0119 1.0000 0.5674 1.0000 1.0000e-04 

. 
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. 

. 

. 

. 

. 

91/100 9.7264e-05 1.0000 0.0012 1.0000 1.0000e-04 

92/100 9.1182e-05 1.0000 0.0010 1.0000 1.0000e-04 

93/100 8.7003e-05 1.0000 0.0011 1.0000 1.0000e-04 

94/100 8.2568e-05 1.0000 0.0011 1.0000 1.0000e-04 

95/100 7.6151e-05 1.0000 0.0011 1.0000 1.0000e-04 

96/100 8.4102e-05 1.0000 0.0010 1.0000 1.0000e-04 

97/100 7.9641e-05 1.0000 0.0011 1.0000 1.0000e-04 

98/100 6.6916e-05 1.0000 0.0010 1.0000 1.0000e-04 

99/100 6.6890 1.0000 0.0011 1.0000 1.0000e-04 

100/100 6.6448e-05 1.0000 0.0010 1.0000 1.0000e-04 

 

 

Figure 4 will show the accuracy and loss metrics ongoing through the training and testing process.     

 
                   a. Accuracy over 100 Epochs                                 b. Loss over 100 Epochs 

Figure 4. Accuracy, Loss after 100 Epochs   

 

Figure 5 shows accuracy, loss, validation accuracy, validation loss and learning rate over epochs.   

  

 
Figure 5. Accuracy, Loss for training and accuracy, loss for Validation and Learning Rate over epochs 

      

Figure 6 shows training and validation accuracy, training and validation loss in split charts.   
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Figure 6. Accuracy and Loss (for Training and Validation stages) over Epochs in Split Charts   

   

Table 4 shows the precision, recall and F1 measures for this model and it exhibits the accuracy %100.  

 
Table 4. Precision Recall, F1-Score and Accuracy Metrics of Training Model: 

 

Class No#        Precision          Recall           F1-Score      

 

      0                    1.00                  1.00                1.00          

      1                    1.00                  1.00                1.00          

      2                    1.00                  1.00                1.00          

      3                    1.00                  1.00                1.00          

      4                    1.00                  1.00                1.00          

      5                    1.00                  1.00                1.00          

      6                    1.00                  1.00                1.00          

      7                    1.00                  1.00                1.00          

      9                    1.00                  1.00                1.00          

      10                  1.00                  1.00                1.00          

      11                  1.00                  1.00                1.00          

      12                  1.00                  1.00                1.00          

      13                  1.00                 1.00                 1.00          

      14                  1.00                 1.00                 1.00          

      15                  1.00                 1.00                 1.00          

      16                  1.00                 1.00                 1.00          

      17                  1.00                 1.00                 1.00          

      18                  1.00                 1.00                 1.00          

      19                  1.00                 1.00                 1.00          

 

Accuracy            1.00            

   

 

        Figure 7 depicts the confusion matrix as a classification metrics for this model and it shows the 

complete correspondence between true labels and predicted labels. The accuracy is %100 in testing 

model.   
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Figure 7. Confusion Matrix (Actual, Predicted) Labels and Accuracy Metrics 

 

3.2. Loading weights to VGG16-fine tuning model 

        The stored weights are uploaded to a pre-trained Tune model in order to extract the features that play 

a key role in generating the biometric keys. In our proposed model, the convolutional layers are 

implemented as usual, and then the figs are extracted from the last convolutional layer of the model 

structure. Table 5 shows the model summary through training process. 

 
Table 5. Feature Extractor VGG-16 Tune Model Summary: 

 

Model Parameters No. of Parameters 

Total Number of parameters 14,714,688 

Trainable parameters No. 14,714,688 

Non-trainable parameters No. 0 

 

 

3.3. Implementation of ANN Classifier 

        The ANN classifier plays an important role in determining the extent to which a finger image belongs 

to a specific class according to a predefined threshold. Experiments have proven that the ANN classifier 

was the best with an accuracy rate of 98%. After classifying the image, its private key is generated from the 

stored vector. We proposed a deep ANN sequential model for this purpose. Table 6 depicts the structure of 

this deep ANN classifier summary, while Table 7 depicts the accuracy metrics of the deep ANN classifier. 

 
Table 6. Deep ANN Classifier Model Summary. 

 

Model Parameters No. of Parameters 

Total Number of parameters 412,117,268 

Trainable parameters No. 412,108,564 

Non-trainable parameters No. 8,704 
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Table 7. Deep ANN Classifier Recall, Precision and F1-Score Accuracy Metrics 

 

Class No#          Precision            Recall            F1-score    

    0                      1.00                    1.00                  1.00          

    1                      1.00                    1.00                  1.00          

    2                      1.00                    1.00                  1.00          

    3                      1.00                    1.00                  1.00          

    4                      1.00                    1.00                  1.00          

    5                      1.00                    1.00                  1.00          

    6                      1.00                    0.67                  0.80          

    7                      1.00                    1.00                  1.00          

    9                      1.00                    1.00                  1.00          

   10                     1.00                    1.00                  1.00          

   11                     1.00                    1.00                  1.00          

   12                     1.00                    1.00                  1.00          

   13                     1.00                    1.00                  1.00          

   14                      0.75                   1.00                  0.86          

   16                      1.00                   1.00                  1.00          

   17                      1.00                   1.00                  1.00          

   18                      1.00                   1.00                  1.00          

   19                      1.00                   1.00                  1.00         

   Accuracy 0.98         

  

 

Figure 8 depicts the training and validation accuracy and loss. 

 

 
 

Figure 8. Accuracy and Loss over Epochs 

 

            The following chart shown in Figure 9 depicts the accuracy (training/validation), loss 

(training/validation) and learning rate for this ANN deep sequential model.   
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Figure 9. Accuracy, Loss (for Training and Loss) and Learning Rate over Epochs 

 

        Figure 10 shows the confusion matrix of this deep classifier. 

  

 
 

Figure 10. Confusion Matric (Actual, Predicted) Labels and Accuracy Metric 

 

3.4. Performance Evaluation 

        To discuss the results, accuracy will be taken then precision/recall and F1-score metrics. Then we 

will compare between our deep Artificial Neural Network (ANN) classifier performances with other 

classifiers such as Support Vector Machine (SVM) classifier and Random Forest (RF) classifier.  

3.4.1. Accuracy 

        Starting with accuracy as a criterion for our proposed system, relative to the rest of the systems 

published in the past few years, according to their sources. Practical experiments on our proposed model 

showed an accuracy of more than % 99. Table 8 shows a comparison of other systems with our proposed 

system.  

 
Table 8. Accuracy Metrics of Our Proposed system with Several Recent Approaches 

 

Reference Method ACC % 

(Gupta & Gupta, 2015) Singular-point 97.80 

(Darlow & Rosman, 2017) Minutiae-and-DL 94.55 

(Andono & Supriyanto, 2018) Bag-of-Visual-Words 90 

(Saeed et al., 2018a) Statistics of D-SIFT descriptor 97.40 

(Saeed et al., 2018b) Modified-HOG descriptor 98.70 

(Saeed et al., 2022) DeepFKTNet model 98.89 

(Jeon & Rhee, 2017) Ensemble-CNN model  97.2 

(Zia et al., 2019) B-DCNNs  95.3 

(Nguyen & Nguyen, 2019) CNN (tested on 3 classes of FVC2004) 96.1 

(Nahar et al., 2022) Modified-LeNet (tested on FVC2004-

DB1)  

99.1 

(Wu et al., 2022) MCP-FP model 98 

(Ang et al., 2018) CIEC-method > 92 

Proposed System CNN and DL method > 99 
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3.4.2. Recall, Precision and F1-Scores Metrics 

 

         Recall, Precision and F1-score metrics can be represented in the following Table 9: 

 
Table 9. Recall, Precision and F1-Score Metrics of our Approach. 

 

 Recall  Precision F1-score 

Proposed System 1.0 1.0 1.0 

 

3.4.3 ANN, SVM and Random Forest Classifiers Comparisons 

 

            The Table 10 shows the precision, recall and F1-score metrics between our classifier with other 

two classifiers. The results shows that our proposed deep learning ANN classifier is higher accuracy. 

 
Table 10. Comparison of Precision, Recall, F1-Score and Accuracy Metrics for Our Proposed Deep ANN Classifier 

with Support Vecttor Machine (SVM) and Random Forest (RF) Based Classifiers: 

 

Classifier Precision Recall F1-score Accuracy 

Support Vecttor Machine (SVM) 95.0 92.0 92.0 93.0 

Random Forest (RF) 95.0 92.0 92.0 93.0 

Deep ANN Based Proposed Classifier 99.0 98.0 98.0 98.0 

   

 

3.5. Case Study of Key Generation 

            The vectors generated from the previous stage are dealt with the threshold of each class to find the 

vectors mean. The values are normalized and the vector is converted to a binary matrix. Final vector 128 

elements to generate the key. The following list is for a report on the number of images in the classes. 

All samples in dataset with shape:  (20,) 

All samples Label shape:  (20,) 

Original labels  are   :  ['0', '1', '10', '11', '12', '13', '14', '15', '16', '17', '18', '19', '2', '3', '4', '5', '6', '7', '8', '9'] 

New labels read are   :  [0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19].  

Table 11 is for a report on the number of vectors in each class. 

 
Table 11. Number of Vectors in Classes. 

 

Class #              No. of Vectors 

Class: 0        Contains: 70 Vectors. 

Class: 1        Contains: 70 Vectors. 

Class: 2        Contains: 70 Vectors. 

Class: 3        Contains: 70 Vectors. 

Class: 4        Contains: 70 Vectors. 

Class: 5        Contains: 70 Vectors. 

Class: 6        Contains: 70 Vectors. 

Class: 7        Contains: 70 Vectors. 

Class: 8        Contains: 75 Vectors. 

Class: 9        Contains: 77 Vectors. 

Class: 10      Contains: 70 Vectors. 

Class: 11      Contains: 70 Vectors. 

Class: 12      Contains: 84 Vectors. 
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Class: 13      Contains: 70 Vectors. 

Class: 14      Contains: 70 Vectors. 

Class: 15      Contains: 84 Vectors. 

Class: 16      Contains: 84 Vectors. 

Class: 17      Contains: 84 Vectors. 

Class: 18      Contains: 70 Vectors. 

Class: 19      Contains: 70 Vectors. 

 

The following description is a screenshot of Python results: 

(20, 100352) 

Vector seed: (100352,) 

(20, 128, 784) 

Matrix M x N: (128, 784) 

(20, 128, 1) 

Final Vector V: (128, 1) 

key generated shape: (1, 14, 14, 512) 

shape of transformed embedding key to 1-D vector is (1, 100352) 

shape of  normalize 1-D vectors of key is : (1, 100352) 

################################ 

Predicted finger labels is: 1 

The predication ratio is:  0.9994696 

Original label is: 1 

mean_vectors_1D : (20, 100352) 

################################### 

(20, 128, 784) 

(20, 128) 

Vector of predicated class: (128,) 

################################### 

[14.929769  12.263961  14.816275  11.672906  14.803835  11.599381 

 14.9679    11.922448  15.212897  14.27953   10.194674  13.842593 

 10.609922  14.018163  10.647506  13.734892  10.399862  13.164744 

 12.495237  15.164312  12.84347   16.27667   13.136515  16.273499 

 12.785971  15.526098  14.75975   12.830288  14.985918  13.176794 

 16.889175  13.975275  16.834654  13.602913  15.984798  11.549228 

 15.496771  11.472614  16.423452  14.400638  17.438358  17.454704 

 13.755843  16.170088  11.482987  15.201067  11.2428465 16.326849 

 14.223474  17.214596  14.106871  17.013025  12.856354  14.863074 

 11.620988  14.53986   12.622108  16.75001   17.088324  14.03729 

 16.78401   13.205618  14.844906  11.462029  14.524599  12.234268 

 16.356714  13.688227  16.685543  13.901848  16.316341  12.16767 

 14.125783  15.013947  11.87491   16.310966  13.549695  16.606638 

 13.763899  16.19522   12.296909  13.829541  12.135776  15.142895 

 13.030238  16.281967  13.743974  16.63217   13.395031  15.158247 

 13.963714  12.067517  15.054442  12.678177  15.861125  12.952465 

 16.230585  12.604585  14.745344  10.294409  15.083842  11.8574505 

 16.351986  13.034914  16.044096  16.306314  12.422688  14.843797 

 10.636608  14.671333  10.619393  14.62976   10.953194  14.268913 

 10.888568  13.95222   10.163493  13.404393  10.961958  15.500435 

 12.51335   15.257783  15.471551  12.135666  14.688079  11.45552 

 14.473213  12.435441 ] 
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Key is: '3PO09RAfNA0gG5vyEZqxorBJ4caVYtmff1Q2sD9702c=' 

 

3.6. Security analysis 

          The experimental results shows a high performance of our proposed system in training, testing, 

validation, classification and then key generation based on these previous issues. The high accuracy of our 

proposed model, which exceeded 99% in recognizing the fingerprints of the users of the system, produced 

high accuracy for generating biometric keys, and this was confirmed by the test results of the proposed 

system.  

        This section addresses the protection of fingerprint biometrics, password and private key in the context 

of proposed approach. Understanding of several attacks reveals that the proposed approach prevents the 

compromise of fingerprint biometrics, password and the private key. Arguments in favor of the above claim 

are presented in the following subsections. 

 Lack of transparency for models based CNN 

         Many previous studies support the hypothesis of lack of transparency for models based on 

convolutional neural networks. Therefore, storing the model with weight and other parameters does not 

leak any useful information to adversaries in order to break the biometric key generation mechanism.   

 No storage of generated key 

         The suggested approach encrypts private data files using a biometrics based generated key. The 

same cryptographic key is gleaned from the biometrics each time. As the created biometric key is being 

generated again whenever it is required, there is no need to keep it anywhere. 

 Security of fingerprint bio-information 

         In the memory, which comprises 100352 vector elements that represents a numerical values of 

machine learning model, only the mean-of-vectors M that are produced during the key vector operation 

are kept. Since the vector M contains no biometric information, the biometric information is protected 

from being compromised in the backend system and from being recorded by a multiplicity attack, 

blended substitution attack, or cross-matching attack. 

 Exhaustive search attack 

          An attacker in this scenario is unaware of the key creation process or any of the supporting data 

that is kept in the memory. Attackers need to do a lot of extensive search to uncover the real key. The 

total number of probes is proportional to the size of the produced key. If the produced key length is L, 

the number of searches an attacker must do is 2L - 1. 

 Key Randomness 

        The randomization of deep CNN and ANN parameters and vectors support the randomness entropy 

of biometric key generation. 

 

 

 

 



923 

4. CONCLUSION  

Fingerprint key generation framework based on the more stable feature maps extracted by CNN 

model has been implemented. Experimental results show that using a pre-trained VGG16 Fine Tune CNN 

model with transfer learning technique led to higher accuracy results compared to the old traditional minutia-

based methods.  Experimental results show that deep ANN classifier deployment as a classifier within our 

proposed model gives an accurate classification result comparing to other classifiers such as SVM and RF 

classifiers. Experimental results show that the proposed Fine Tuned VGG16 CNN based model gives high 

accuracy to recognize fingerprint even though the low quality of some fingerprint images within dataset. 

Experimental results show that distortion in the fingerprint images (i.e. high rates of damaged portions 

within fingerprint images) can effect on the feature extraction accuracy of the proposed CNN model. 

Generating the biometric key from hidden parameters of CNN model gives a high security to the key 

generating mechanism. Security analysis shows that the stored parameters of the CNN model with lack of 

transparency nature will give more secrecy and protection to the user biometrical attributes. 
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