Pronóstico del intervalo de confianza en la eficiencia de las unidades de toma de decisiones en el análisis envolvente de datos
DOI:
https://doi.org/10.5377/nexo.v33i02.10782Palabras clave:
Análisis envolvente de datos, pronóstico, series de tiempo, programación de probabilidad, eficiencia, simulación de Montecarlo, intervalo de confianzaResumen
El análisis envolvente de datos (DEA) es un método bien conocido para calcular la eficiencia de las unidades de toma de decisiones (DMU) en función de sus entradas y salidas. Cuando los datos son conocidos y en forma de intervalo en un período de tiempo dado, este método puede calcular el intervalo de eficiencia. Desafortunadamente, la DEA no es capaz de pronosticar y estimar el intervalo de confianza de eficiencia de las unidades en el futuro. Este artículo propone un algoritmo de pronóstico de eficiencia junto con un intervalo de confianza del 95% para generar un conjunto de datos de intervalo para el próximo período de tiempo. Además, la opinión del gerente se inserta y desempeña su papel en el modelo de pronóstico propuesto. Equipado con un conjunto de datos pronosticado y con respecto al conjunto de datos de períodos anteriores, se puede pronosticar la eficiencia para el período futuro. Esto se hace proponiendo un modelo propuesto y resolviéndolo mediante el método del intervalo de confianza. A continuación, el método propuesto se implementa sobre los datos de una industria automotriz y se compara con los métodos de simulación de Monte Carlo y el modelo de intervalo. Usando los resultados, se muestra que el método propuesto funciona mejor para pronosticar el intervalo de confianza de eficiencia. Finalmente, se calcula la eficiencia y el intervalo de confianza del 95% para el próximo período utilizando el modelo propuesto.
Descargas
630
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en Nexo Revista Científica están de acuerdo con los siguientes términos:
- Los autores conservan los derechos de autor y conceden a la revista el derecho de la primera publicación bajo la licencia Creative Commons Attribution License, que permite a otros compartir el trabajo con un reconocimiento a la autoría de la obra y a la publicación inicial en Nexo Revista Científica.
- Los autores pueden establecer por separado acuerdos adicionales para la distribución no exclusiva de la versión de la obra publicada en la revista (por ejemplo, en un repositorio institucional o en un libro) con el reconocimiento de su publicación inicial en Nexo Revista Científica.
- Se permite y se anima a los autores a difundir sus trabajos electrónicamente (por ejemplo, en repositorios institucionales o en su propio sitio web) antes y durante el proceso de envío, ya que puede dar lugar a intercambios productivos, así como a una citación más temprana y mayor de los trabajos publicados.