Diseño de un modelo de gestión del riesgo de crédito en la red de agentes de empresas de servicios posventa Utilización de los componentes financieros de los servicios posventa y algoritmos meta innovadores
DOI:
https://doi.org/10.5377/reice.v11i22.17363Palabras clave:
Email Marketing, Componentes electrónicos B2B, Herramientas de MarketingResumen
Los correos electrónicos se pueden utilizar como herramientas de marketing eficaces para difundir mensajes publicitarios a una lista de destinatarios objetivo. Sin embargo, enviar correos electrónicos sin una estrategia adecuada sólo conduciría a que un gran número de destinatarios ignoraran totalmente el correo electrónico, se dieran de baja de la lista de correo electrónico o lo marcaran como spam. Las estrategias de segmentación de correo electrónico intentan reducir dichos resultados y mejorar el rendimiento de la campaña de correo electrónico. Este artículo presenta el estudio de caso de una campaña de marketing por correo electrónico para la industria de componentes electrónicos de empresa a empresa (B2B). En este artículo se estudia el caso de Electronents, un proveedor B2B de componentes electrónicos, bajo un esquema de segmentación por ubicación geográfica en el que se eligen cuatro regiones diferentes. Los resultados de las cabras se analizan en función de múltiples métricas, incluida la tasa de apertura, la tasa de clics para abrir, la cantidad de quejas y la cantidad de suscripciones. Los resultados del estudio muestran que para lograr una campaña de email marketing eficaz es crucial invertir en datos adecuados y de calidad, así como definir un criterio de segmentación claro.
Descargas
211
Citas
Ahelegbey, D. F., Giudici, P., & Hadji-Misheva, B. (2019). Factorial network models to improve P2P credit risk management. Frontiers in Artificial Intelligence, 2, 8.
Alzeaideen, K. (2019). Credit risk management and business intelligence approach of the banking sector in Jordan. Cogent Business & Management, 6(1), 1675455.
Angelini, E., Di Tollo, G., & Roli, A. (2008). A neural network approach for credit risk evaluation. The quarterly review of economics and finance, 48(4), 733-755.
Balina, R. (2018). Forecasting bankruptcy risk in the context of credit risk management–a case study on the wholesale food industry in Poland. International Journal of Economic Sciences, 7(1), 1-15.
Bekhet, H. A., & Eletter, S. F. K. (2012). Credit risk management for the Jordanian commercial banks: a business intelligence approach.
Bussmann, N., Giudici, P., Marinelli, D., & Papenbrock, J. (2021). Explainable machine learning in credit risk management. Computational Economics, 57(1), 203-216.
Eckel, C., Eckel, D., & Singal, V. (1997). Privatization and efficiency: Industry effects of the sale of British Airways. Journal of Financial Economics, 43(2), 275-298.
Changjian, L., & Peng, H. (2017, May). Credit risk assessment for rural credit cooperatives based on improved neural network. In 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA) (pp. 227-230). IEEE.
Changjian, L., & Peng, H. (2017, May). Credit risk assessment for rural credit cooperatives based on improved neural network. In 2017 International Conference on Smart Grid and Electrical Automation (ICSGEA) (pp. 227-230). IEEE.
Cossin, D., & Schellhorn, H. (2007). Credit risk in a network economy. Management Science, 53(10), 1604-1617.
Dadios, E. P., & Solis, J. (2012). Fuzzy-neuro model for intelligent credit risk management. Intelligent Information Management, 4(05), 251.
García, F., Giménez, V., & Guijarro, F. (2013). Credit risk management: A multicriteria approach to assess creditworthiness. Mathematical and computer modelling, 57(7-8), 2009-2015.
Giudici, P., Hadji-Misheva, B., & Spelta, A. (2019). Network-based scoring models to improve credit risk management in peer-to-peer lending platforms. Frontiers in artificial intelligence, 2, 3.
Giudici, P., Hadji-Misheva, B., & Spelta, A. (2020). Network-based credit risk models. Quality Engineering, 32(2), 199-211.
Gnoatto, A., Picarelli, A., & Reisinger, C. (2020). Deep xVA solver--A neural network-based counterparty credit risk management framework. arXiv preprint arXiv:2005.02633.
Huang, B., Zhang, Q. P., & Hu, Y. Q. (2005, August). Research on credit risk management of the state-owned commercial bank. In 2005 International Conference on Machine Learning and Cybernetics (Vol. 7, pp. 4038-4043). IEEE.
Huang, X., Liu, X., & Ren, Y. (2018). Enterprise credit risk evaluation based on neural network algorithm. Cognitive Systems Research, 52, 317-324.
Hong, J. H., Kim, B. C., & Park, K. S. (2019). Optimal risk management for the sharing economy with stranger danger and service quality. European Journal of Operational Research, 279(3), 1024-1035.
Karthekeyan, A. R. (2014). Fuzzy neural network-based extreme learning machine technique in credit risk management. Int J Res Eng IT Soc Sci, 4.
Keramati, M. A., & Shaeri, M. (2014, July). Assessment of Credit Risk Management and Managerial Efficiency of Banks Using Data Envelopment Analysis (DEA) Network. In Biological Forum (Vol. 6, No. 2, p. 320). Research Trend.
Khashman, A. (2009). A neural network model for credit risk evaluation. International Journal of Neural Systems, 19(04), 285-294.
Khashman, A. (2010). Neural networks for credit risk evaluation: Investigation of different neural models and learning schemes. Expert Systems with Applications, 37(9), 6233-6239.
Lai, K. K., Yu, L., Wang, S., & Zhou, L. (2006, September). Credit risk analysis using a reliability-based neural network ensemble model. In International Conference on Artificial Neural Networks (pp. 682-690). Springer, Berlin, Heidelberg.
Li, D., Ding, T., & Liu, C. (2021). Credit Risk Management of P2P Network Lending. Tehnički vjesnik, 28(4), 1145-1151.
Ma, Z., Hou, W., & Zhang, D. (2021). A credit risk assessment model of borrowers in P2P lending based on BP neural network. PloS one, 16(8), e0255216.
Soltanizadeh, S., Rasid, S. Z. A., Golshan, N. M., & Ismail, W. K. W. (2016). Business strategy, enterprise risk management and organizational performance. Management Research Review, 39(9), 1016-1033.
Miglionico, M. C., & Parillo, F. (2012, July). An application in bank credit risk management system employing a bp neural network based on sfloat24 custom math library using a low-cost FPGA device. In International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems (pp. 84-93). Springer, Berlin, Heidelberg.
Pacelli, V., & Azzollini, M. (2011). An artificial neural network approach for credit risk management. Journal of Intelligent Learning Systems and Applications, 3(02), 103.
Wang, H. (2021). Credit Risk Management of Consumer Finance Based on Big Data. Mobile Information Systems, 2021.
Wu, C., Guo, Y., Zhang, X., & Xia, H. (2010). Study of personal credit risk assessment based on support vector machine ensemble. International Journal of Innovative Computing, Information and Control, 6(5), 2353-2360.
Yan, C., Fu, X., Wu, W., Lu, S., & Wu, J. (2019, February). Neural network-based relation extraction of enterprises in credit risk management. In 2019 IEEE International Conference on Big Data and Smart Computing (BigComp) (pp. 1-6). IEEE.
Yanenkova, I., Nehoda, Y., Drobyazko, S., Zavhorodnii, A., & Berezovska, L. (2021). Modelling of Bank Credit Risk Management Using the Cost Risk Model. Journal of Risk and Financial Management, 14(5), 211.
Yang, Z., & Fang, X. (2004). Online service quality dimensions and their relationships with satisfaction: A content analysis of customer reviews of securities brokerage services. International journal of service industry management, 15(3), 302-326.
Zhao, S. F., & Chen, L. C. (2009, June). The BP neural networks applications in bank credit risk management system. In 2009 8th IEEE International Conference on Cognitive Informatics (pp. 527-532). IEEE.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 REICE: Revista Electrónica de Investigación en Ciencias Económicas
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
Copyright (c) Revista Electronica de Investigacion en Ciencias Economicas
Los derechos sobre los artículos publicados en REICE son de la revista, a los efectos de poder gestionar su mejor difusión. No obstante, puesto que la finalidad de la misma es la difusión del conocimiento, esta revista provee acceso libre inmediato a su contenido, bajo el principio de que hacer disponible gratuitamente la investigación al público, lo cual fomenta un mayor intercambio de conocimiento global.
Las opiniones expresadas por los autores no necesariamente reflejan la postura de la editora de la publicación ni de la UNAN-Managua Se autoriza su reproducción y distribución (en cualquier tipo de soporte) siempre que se cumpla las siguientes indicaciones:
- La autoría del trabajo
- Que se indique su origen (revista REICE, volumen, número y dirección electrónica del documento)