Metodología para la implementación del método adaptativo de Monte Carlo en la evaluación de la incertidumbre de la medición, utilizando el cálculo simbólico Maple. Aplicación a un experimento sencillo
DOI:
https://doi.org/10.5377/universitas.v3i2.1662Palabras clave:
incertidumbre de la medición por el método adaptativo de Monte Carlo, propagación de las distribuciones.Resumen
El objetivo del presente estudio es aplicar una metodología rigurosa para estimar la incertidumbre de las mediciones utilizando el método adaptativo de la simulación de Monte Carlo (MCM). Se tomó como ejemplo la estimación de la incertidumbre en la medición del área de un triángulo. El valor del área (y) y su incertidumbre asociada (uy) se calcularon en base a un algoritmo que se programó en lenguaje Maple 12, generando un total de 10000 valores del mensurando. Para calcular el intervalo de confianza (o intervalo de cobertura), se exportaron estos valores a la hoja de cálculo MS Excel, se obtuvieron los porcentajes acumulados de la función de distribución de probabilidad (CPDF) y se evaluaron los valores extremos del intervalo de cobertura (yinf, ysup) a una probabilidad del 95%. A partir de los resultados se trazó el histograma y se demostró que siguen una distribución normal. Para verificar la estabilidad estadística se aplicó el procedimiento adaptativo del suplemento 1 de la guía GUM ISO 2008. Los cálculos se repitieron 3 veces, hasta que se obtuvo la precisión adecuada. Los valores de los parámetros finales del mensurando en cm2 fueron: y=50.72, uy=0.13, yinf=50.48, ysup=50.96. También se aplicó el método clásico GUM 1995 o ley de propagación de la incertidumbre, encontrándose los siguientes valores: y=50.72, uy=0.25, yinf=50.21, ysup=51.22. Al comparar los dos métodos se observó que la técnica de simulación tiene mayor precisión.
Descargas
1108
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Copyright © Universidad Nacional Autónoma de Nicaragua, León. VRIIE