Evaluation of Uncertainty in Determination of Lead in Blood by anodic stripping voltammetry, Applying Weighted Model Calibration Pattern Adding Generated by Monte Carlo Simulation

Authors

DOI:

https://doi.org/10.5377/universitas.v4i1.1675

Keywords:

Evaluation of uncertainty in the determination of lead in blood by Monte Carlo simulation, Determinatiòn of lead in blood by anodic stripping voltammetry.

Abstract

This study aims to demonstrate that evaluating uncertainty in the determination of lead in blood by anodic stripping voltammetry—using weighted linear regression analysis through the standard addition method and generated via Monte Carlo simulation—shows greater consistency with experimental results than the classical approach based on the law of propagation of uncertainty. For the first approach, a program was developed in Maple 13, based on the algorithm from Supplement 1 of the GUM 2008 guide, taking into account uncertainties in both the instrumental signal readings and the preparation of calibrator concentrations. The characteristic values for lead in a blood sample were: 3.02 μg/dL, with an uncertainty of 0.15 μg/dL, and a coverage interval from 2.74 μg/dL to 3.29 μg/dL. The results obtained using the law of propagation of uncertainty from the classical weighted calibration model were: 3.08 μg/dL, uncertainty of 0.042 μg/dL, and a coverage interval from 3.00 to 3.16 μg/dL. Although the numerical method showed greater uncertainty, it aligned more closely with the experimental results of a blood sample.

Downloads

Download data is not yet available.
Abstract
1295
PDF (Español (España)) 1423

Author Biographies

G. Delgado-Alvarado, National Autonomous University of Nicaragua, León. Nicaragua

Researcher at the Faculty of Science and Technology, Department of Chemistry, Laboratory of Heavy Metal Trace Analysis (LATMP), Basic Sciences Building, León, Nicaragua.

M. Vanegas-Carvajal, National Autonomous University of Nicaragua, León. Nicaragua

Researcher at the Faculty of Science and Technology, Department of Chemistry, Heavy Metal Trace Analysis Laboratory (LATMP), Basic Sciences Building, León, Nicaragua.

J.B. Salazar-Casco, National Autonomous University of Nicaragua, León. Nicaragua

Researcher at the Faculty of Science and Technology, Department of Chemistry, Heavy Metals Trace Analysis Laboratory (LATMP), Basic Sciences Building, León, Nicaragua.

References

1. BARD A. y FULKNER L., (2000), "Electrochemical Methods", 2a edición, John Wiley, NY. Pag. 458.

2. HENZE G., (2003), "Introduction to Polarography and Voltammetry", Metrohm, Suiza, pag. 23.

3. BESSIER P.M., (1994), Analyst, 119, 219.

4. ARROYO L., ALVARADO L y BRAVO S., (1996), Ing. Cienc. Quím., 16, 2, 80-82.

5. CLESCERL L, GREENVERG A, EATON A, (1999), "Standards Methods", American Public Health Association, 20 Edición, NY, pag. 3-52.

6. W, Wasiak, W. Ciszewska, A, Ciszewski, (1996), Analytica Chimica Acta, 335, 201-207. https://doi.org/10.1016/S0003-2670(96)00323-6

7. Center for Deasease Control and Prevention, www.cdc.gov/niosh/npg/npgd0368.html. Acceso el 26 de Mayo 2011.

8. Kowalski W, (1998), "Chemometrics" John Wiley, N.Y. pag 132.

9. BIPM, IEC, IFCC, IUPAC, OIML (1995:2008). Guide for to the Expression of Uncertainty in Measurement (GUM), ISO, Ginebra.

10. EURACHEM/CITAC GUIDE, (2000), Quantifying Uncertainty in Analytical Chemistry, 2da edición, UK.

11. OGREN P, DAVIS B y NICK G, (2001), J. Chem. Edu. 78, 6, 827-836. https://doi.org/10.1021/ed078p827

12.MEIER P y ZUND R, 2000, "Statistical Methods in Analytical Chemistry", John Wiley, N.Y. pag. 166. https://doi.org/10.1002/0471728411

13. BIPM, IEC, IFCC, IUPAC, ILAC, ISO, IUPAP y OIML, (2008). "Evaluation of measurements data. Supplement 1 to the Guide for to the Expression of Uncertainty in Measurement (GUM). Propagation of the distributions using a Monte Carlo Method", Paris.

14. DELGADO G. y HERNÁNDEZ N., (2009), "Estimación de la incertidumbre en la determinación de aflatoxina B1 en maní de exportación por HPLC-FD", Universitas UNAN-León, Vol. 3, 1, 5-15. https://doi.org/10.5377/universitas.v3i1.1655

15. DELGADO G. y HERNÁNDEZ N., (2009), "Cálculo de la incertidumbre por simulación de Montecarlo en la determinación de aflatoxina B1 en maní de exportación por HPLC-FD. Aplicación a la evaluación de la conformidad", Universitas UNAN-León, Vol. 3, 1, 16-26.https://doi.org/10.5377/universitas.v3i1.1656

16. NEULLY. M. (1998), "Modélisation et estimation des erreurs des mesures", Technique & Documentation, 2a edición, París, pag. 53.

17. LATMP-PT-01, 2010, "Procedimiento para la determinación de plomo en sangre por Voltamperometría de redisolución anódica por diferencial de impulso (ASV-DP)". Laboratorio de Análisis de Trazas de Metales Pesados (LATMP), UNAN-León.

Published

2013-07-04

How to Cite

Delgado Alvarado, G., Vanegas Carvajal, M., & Salazar Casco, J. B. (2013). Evaluation of Uncertainty in Determination of Lead in Blood by anodic stripping voltammetry, Applying Weighted Model Calibration Pattern Adding Generated by Monte Carlo Simulation. Universitas (León) , 4(1), 58–70. https://doi.org/10.5377/universitas.v4i1.1675

Issue

Section

Original Scientific Papers