Curvatura de la Luz

Autores/as

  • Javier Sánchez Villanueva Escuela de Fı́sica - Universidad Nacional Autónoma de Honduras

DOI:

https://doi.org/10.5377/ref.v3i2.8314

Palabras clave:

Modelo Corpuscular de la Luz, Teorı́a General de la Relatividad, Espacio Euclı́deo, Tensor, Métrica de Schwarzchild, Derivada Covariante, Geodésica

Resumen

La idea de que la luz se curva cuando pasa cerca de un cuerpo masivo es vieja, se remonta al menos a Newton y Laplace. En un modelo corpuscular de la luz, tal como el de Newton, es natural que la atracción gravitacional hará que una lı́nea recta de luz se curve como la trayectoria de cualquier cuerpo de materia. El doblamiento gravitacional de la luz debido al sol vista en la teorı́a de Newton para un fotón masivo, tomando que la masa tiende a cero, resulta ser 0.87 arcosegundos - exactamente la mitad del valor predicho por la teorı́a general de la relatividad. Cuando Eddington midió el valor correcto durante un eclipse solar observado en la isla del prı́ncipe en 1919, obtuvo un resultado en acuerdo con la teorı́a de Einstein, donde la predicción de Newton fue de un factor de 2 demasiado pequeño. Fue este suceso (”Newton se equivocó - Einstein tuvo razón”) que trajo fama a Einstein. Hoy el valor relativı́stico del ángulo deflectado se ha provado correctamente en varias observaciones a un valor exacto.

Descargas

Los datos de descargas todavía no están disponibles.
Resumen
2302
PDF 613

Descargas

Publicado

2015-12-21

Cómo citar

Sánchez Villanueva, J. (2015). Curvatura de la Luz. Revista De La Escuela De Física, 3(2), 61–66. https://doi.org/10.5377/ref.v3i2.8314

Número

Sección

Investigación