Polimorfismos genéticos CYP2C9 y VKORC1-1639 implicados en la farmacocinética y farmacodinámica de warfarina en población latinoamericana
DOI:
https://doi.org/10.5377/torreon.v10i27.10842Palabras clave:
warfarina, CYP2C9, VKORC1-1639, polimorfismosResumen
La warfarina es un anticoagulante ampliamente usado a nivel mundial para la prevención y tratamiento de eventos tromboembólicos. Los polimorfismos en los genes CYP2C9 y VKORC1 -1639 se han asociado con la variabilidad de respuesta a la warfarina en diversas poblaciones. La identificación de la presencia de polimorfismos puede garantizar el uso más seguro y efectivo de warfarina al estimar la dosis adecuada para cada paciente. El objetivo de esta investigación es determinar la frecuencia de estos polimorfismos genéticos en la población latinoamericana.
De los 402 artículos revisados, se incluyeron 11 estudios con datos de frecuencia de polimorfismos genéticos de 2,830 pacientes latinoamericanos. Las variantes alélicas CYP2C9 *1/*2 y CYP2C9 *1/*3 fueron más frecuentes en la población estudiada con un 13.15 % y 6.93%, respectivamente. La variante alélica *3/*3 se presentó con una frecuencia de 0.17 %. En cuanto a los polimorfismos del gen VKORC1 -1639 se reportaron frecuencias de 49.11 %, 33 % y 17 % para las variantes GA, GG y AA, respectivamente.
La frecuencia de polimorfismos en los genes CYP2C9 y VKORC1 -1639 en la población latinoamericana varía en dependencia del origen étnico de la población. En comparación con otras poblaciones se muestra un comportamiento similar al reportado en poblaciones de origen caucásico.
Descargas
1049
PDF (English) 304
Citas
Al-Eitan, L. N., Almasri, A. Y., & Khasawneh, R. H. (2018). Impact of CYP2C9 and VKORC1 Polymorphisms on Warfarin Sensitivity and Responsiveness in Jordanian Cardiovascular Patients during the Initiation Therapy. Genes, 9(12), 578. https://doi.org/10.3390/genes9120578
Arribas IA. (2010). Farmacogenética y variabilidad interindividual en la respuesta a los medicamentos. Academia de Farmacia “Reino de Aragón. http://www.academiadefarmaciadearagon.es/docs/documentos/documento21.pdf
Benavides, F., Grossman, N., Poggi, H., Nieto, E., Bertrán, A., Araos, D., Vásquez, M., Ibarra, I., Cáceres, F., Espinoza, K., Lagos, M., & Repetto M, G. (2015). Efecto de las variantes de VKORC1 y CYP2C9 sobre la dosis de anticoagulantes orales en individuos chilenos Revista medica de Chile, 143(11), 1369–1376. https://doi.org/10.4067/S0034-98872015001100001
Botton, M. R., Bandinelli, E., Rohde, L. E., Amon, L. C., & Hutz, M. H. (2011). Influence of genetic, biological and pharmacological factors on warfarin dose in a Southern Brazilian population of European ancestry. British journal of clinical pharmacology, 72(3), 442–450. https://doi.org/10.1111/j.1365-2125.2011.03942.x
Bryk, A. H., Wypasek, E., Plens, K., Awsiuk, M., & Undas, A. (2018). Bleeding predictors in patients following venous thromboembolism treated with vitamin K antagonists: Association with increased number of single nucleotide polymorphisms. Vascular pharmacology, 106, 22–27. https://doi.org/10.1016/j.vph.2018.02.002
Cabrero J. y Camacho P. Fundamentos de Genética de Poblaciones. http://sesbe.org/sites/sesbe.org/files/recursos-sesbe/fundamentos_GdeP.pdf
Castelán-Martínez, O. D., Hoyo-Vadillo, C., Sandoval-García, E., Sandoval-Ramírez, L., González-Ibarra, M., Solano-Solano, G., Gómez-Díaz, R. A., Parra, E. J., Cruz, M., & Valladares-Salgado, A. (2013). Allele frequency distribution of CYP2C9 2 and CYP2C9 3 polymorphisms in six Mexican populations. Gene, 523(2), 167–172. https://doi.org/10.1016/j.gene.2013.03.128
Cavallari, L. H., Shin, J., & Perera, M. A. (2011). Role of pharmacogenomics in the management of traditional and novel oral anticoagulants. Pharmacotherapy, 31(12), 1192–1207. https://doi.org/10.1592/phco.31.12.1192
Céspedes-Garro, C., Naranjo, M. G., Rodrigues-Soares, F., LLerena, A., Duconge, J., Montané-Jaime, L. K., Roblejo, H., Fariñas, H., Campos, M. L., Ramírez, R., Serrano, V., Villagrán, C. I., & Peñas-LLedó, E. M. (2016). Pharmacogenetic research activity in Central America and the Caribbean: a systematic review. Pharmacogenomics, 17(15), 1707–1724. https://doi.org/10.2217/pgs-2016-0053
Cifuentes, R., Murillo, J. y Avella, E. (2016). Predicción a la sensibilidad a la warfarina con base en polimorfismos de los genes VKORC1 y CYP2C9 en pacientes colombianos. Biomédica, 36, 91-100. https://www.revistabiomedica.org/index.php/biomedica/article/view/2795
Claudio-Campos, K., Orengo-Mercado, C., Renta, J. Y., Peguero, M., García, R., Hernández, G., Corey, S., Cadilla, C. L., & Duconge, J. (2015). Pharmacogenetics of healthy volunteers in Puerto Rico. Drug metabolism and personalized therapy, 30(4), 239–249. https://doi.org/10.1515/dmpt-2015-0021
Cullell, N., Carrera, C., Muiño, E., Torres, N., Krupinski, J., & Fernandez-Cadenas, I. (2018). Pharmacogenetic studies with oral anticoagulants. Genome-wide association studies in vitamin K antagonist and direct oral anticoagulants. Oncotarget, 9(49), 29238–29258. https://doi.org/10.18632/oncotarget.25579
Daneshjou, R., Tatonetti, N. P., Karczewski, K. J., Sagreiya, H., Bourgeois, S., Drozda, K., Burmester, J. K., Tsunoda, T., Nakamura, Y., Kubo, M., Tector, M., Limdi, N. A., Cavallari, L. H., Perera, M., Johnson, J. A., Klein, T. E., & Altman, R. B. (2013). Pathway analysis of genome-wide data improves warfarin dose prediction. BMC genomics, 14 Suppl 3(Suppl 3), S11. https://doi.org/10.1186/1471-2164-14-S3-S11
Dean, L. (2012). Warfarin Therapy and VKORC1 and CYP Genotype. In V. M. Pratt (Eds.) et. al., Medical Genetics Summaries. National Center for Biotechnology Information (US).
Dilge Taşkın, B., Kula, S., Ergün, M. A., Altun, D., Olguntürk, R., Tunaoğlu, F. S., Oğuz, A. D., & Gürsel, T. (2016). The effect of CYP2C9 and VKORC1 genetic polymorphisms on warfarin dose requirements in a pediatric population. Anatolian journal of cardiology, 16(10), 791–796. https://doi.org/10.14744/AnatolJCardiol.2015.6150
Dong, A. N., Tan, B. H., Pan, Y., & Ong, C. E. (2018). Cytochrome P450 genotype-guided drug therapies: An update on current states. Clinical and experimental pharmacology & physiology, 45(10), 991–1001. https://doi.org/10.1111/1440-1681.12978
Duconge, J., Cadilla, C. L., Windemuth, A., Kocherla, M., Gorowski, K., Seip, R. L., Bogaard, K., Renta, J. Y., Piovanetti, P., D'Agostino, D., Santiago-Borrero, P. J., & Ruaño, G. (2009). Prevalence of combinatorial CYP2C9 and VKORC1 genotypes in Puerto Ricans: implications for warfarin management in Hispanics. Ethnicity & disease, 19(4), 390–395. https://www.ncbi.nlm.nih.gov/pubmed/20073138
Flockhart, D. A., O'Kane, D., Williams, M. S., Watson, M. S., Flockhart, D. A., Gage, B., Gandolfi, R., King, R., Lyon, E., Nussbaum, R., O'Kane, D., Schulman, K., Veenstra, D., Williams, M. S., Watson, M. S., & ACMG Working Group on Pharmacogenetic Testing of CYP2C9, VKORC1 Alleles for Warfarin Use (2008). Pharmacogenetic testing of CYP2C9 and VKORC1 alleles for warfarin. Genetics in medicine : official journal of the American College of Medical Genetics, 10(2), 139–150. https://doi.org/10.1097/GIM.0b013e318163c35f
Gaikward, T., Ghosh K, Kulkarni B, Kulkarni V, Ross C. and Shetty S. (2013). Influence of CYP2C9 and VKORC1 gene polymorphism on warfarin dosage, over anticoagulation and other adverse outcomes in Indian Population. European Journal of Pharmacology, 710:80-84. https://www.sciencedirect.com/science/article/abs/pii/S0014299913002951
Galvez, J. M., Restrepo, C. M., Contreras, N. C., Alvarado, C., Calderón-Ospina, C. A., Peña, N., Cifuentes, R. A., Duarte, D., Laissue, P., & Fonseca, D. J. (2018). Creating and validating a warfarin pharmacogenetic dosing algorithm for Colombian patients. Pharmacogenomics and personalized medicine, 11, 169–178. https://doi.org/10.2147/PGPM.S170515
Golwala, H., Jackson, L. R., 2nd, Simon, D. N., Piccini, J. P., Gersh, B., Go, A. S., Hylek, E. M., Kowey, P. R., Mahaffey, K. W., Thomas, L., Fonarow, G. C., Peterson, E. D., Thomas, K. L., & Outcomes Registry for Better Informed Treatment for Atrial Fibrillation (ORBIT-AF) Registry (2016). Racial/ethnic differences in atrial fibrillation symptoms, treatment patterns, and outcomes: Insights from Outcomes Registry for Better Informed Treatment for Atrial Fibrillation Registry. American heart journal, 174, 29–36. https://doi.org/10.1016/j.ahj.2015.10.028
Guerrero, F. (2009). Farmacogenética de Warfarina. Revista Médica Sanitas, 12(2): 8-12. http://www.gbcbiotech.com/laboratorio/assets/farmacogenetica-de-warfarina.pdf
Hosseinkhani, Z., Sadeghalvad, M., Norooznezhad, F., Khodarahmi, R., Fazilati, M., Mahnam, A., Fattahi, A., & Mansouri, K. (2018). The effect of CYP2C9*2, CYP2C9*3, and VKORC1-1639 G>A polymorphism in patients under warfarin therapy in city of Kermanshah. Research in pharmaceutical sciences, 13(4), 377–384. https://doi.org/10.4103/1735-5362.235165
Isaza, C, Henaao, J. y Beltrán, L. (2010). Resistencia y Sensibilidad a Warfarina. Investigaciones ANDINA, 12(20): 100. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1025-02552014000200009
Kaye, J. B., Schultz, L. E., Steiner, H. E., Kittles, R. A., Cavallari, L. H., & Karnes, J. H. (2017). Warfarin Pharmacogenomics in Diverse Populations. Pharmacotherapy, 37(9), 1150–1163. https://doi.org/10.1002/phar.1982
Kliegman, R., Stanton, B., y Gene, J. Farmacogenética, farmacogenómica y el concepto de medicina personalizada. Nelson. Tratado de pediatría. Edición 19. Capítulo 56: 1-12. http://www.studentconsult.es/ficheros/booktemplate/9788480869591/files/056_0_contbb.pdf
Li, J., Wang, L., Hu, J., & Xu, G. (2015). Warfarin use and the risks of stroke and bleeding in hemodialysis patients with atrial fibrillation: A systematic review and a meta-analysis. Nutrition, metabolism, and cardiovascular diseases : NMCD, 25(8), 706–713. https://doi.org/10.1016/j.numecd.2015.03.013
Limdi, N. A., Arnett, D. K., Goldstein, J. A., Beasley, T. M., McGwin, G., Adler, B. K., & Acton, R. T. (2008). Influence of CYP2C9 and VKORC1 on warfarin dose, anticoagulation attainment and maintenance among European-Americans and African-Americans. Pharmacogenomics, 9(5), 511–526. https://doi.org/10.2217/14622416.9.5.511
Limdi, N. A., Wadelius, M., Cavallari, L., Eriksson, N., Crawford, D. C., Lee, M. T., Chen, C. H., Motsinger-Reif, A., Sagreiya, H., Liu, N., Wu, A. H., Gage, B. F., Jorgensen, A., Pirmohamed, M., Shin, J. G., Suarez-Kurtz, G., Kimmel, S. E., Johnson, J. A., Klein, T. E., Wagner, M. J., … International Warfarin Pharmacogenetics Consortium (2010). Warfarin pharmacogenetics: a single VKORC1 polymorphism is predictive of dose across 3 racial groups. Blood, 115(18), 3827–3834. https://doi.org/10.1182/blood-2009-12-255992
Liu, N., Irvin, M. R., Zhi, D., Patki, A., Beasley, T. M., Nickerson, D. A., Hill, C. E., Chen, J., Kimmel, S. E., & Limdi, N. A. (2017). Influence of common and rare genetic variation on warfarin dose among African-Americans and European-Americans using the exome array. Pharmacogenomics, 18(11), 1059–1073. https://doi.org/10.2217/pgs-2017-0046
Liu, R., Cao, J., Zhang, Q., Shi, X. M., Pan, X. D., & Dong, R. (2017). Clinical and genetic factors associated with warfarin maintenance dose in northern Chinese patients with mechanical heart valve replacement. Medicine, 96(2), e5658. https://doi.org/10.1097/MD.0000000000005658
Miklosz, J., Kalaska, B., & Mogielnicki, A. (2018). Pharmacogenetic considerations of anticoagulant medication. Journal of physiology and pharmacology : an official journal of the Polish Physiological Society, 69(4), 10.26402/jpp.2018.4.01. https://doi.org/10.26402/jpp.2018.4.01
Miranda, C., Roco, A., Garay, J., Squicciarini, V., Tamayo, E., Agúndez, J., et.al. (2011). Determinación del polimorfismo de CYP2C9*2 y su relación con la farmacocinética de acenocumarol en voluntarios sanos. Revista Chilena de cardiología, 30, 218-224. https://scielo.conicyt.cl/pdf/rchcardiol/v30n3/art05.pdf
Moyer, T. P., O'Kane, D. J., Baudhuin, L. M., Wiley, C. L., Fortini, A., Fisher, P. K., Dupras, D. M., Chaudhry, R., Thapa, P., Zinsmeister, A. R., & Heit, J. A. (2009). Warfarin sensitivity genotyping: a review of the literature and summary of patient experience. Mayo Clinic proceedings, 84(12), 1079–1094. https://doi.org/10.4065/mcp.2009.0278
Natarajan, S., Ponde, C. K., Rajani, R. M., Jijina, F., Gursahani, R., Dhairyawan, P. P., & Ashavaid, T. F. (2013). Effect of CYP2C9 and VKORC1 genetic variations on warfarin dose requirements in Indian patients. Pharmacological reports : PR, 65(5), 1375–1382. https://doi.org/10.1016/s1734-1140(13)71496-8
Parra, E. J., Botton, M. R., Perini, J. A., Krithika, S., Bourgeois, S., Johnson, T. A., Tsunoda, T., Pirmohamed, M., Wadelius, M., Limdi, N. A., Cavallari, L. H., Burmester, J. K., Rettie, A. E., Klein, T. E., Johnson, J. A., Hutz, M. H., & Suarez-Kurtz, G. (2015). Genome-wide association study of warfarin maintenance dose in a Brazilian sample. Pharmacogenomics, 16(11), 1253–1263. https://doi.org/10.2217/PGS.15.73
Perini, J. A., Vargens, D. D., Santana, I. S., Moriguchi, E. H., Ribeiro-Dos-Santos, A. K., Tsutsumi, M., & Suarez-Kurtz, G. (2009). Pharmacogenetic polymorphisms in Brazilian-born, first-generation Japanese descendants. Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas, 42(12), 1179–1184. https://doi.org/10.1590/s0100-879x2009001200010
Raggio V, Neira P, Esperón P, Lorenzo M and Stoll M. (2005). Respuesta terapéutica inadecuada a la warfarina en pacientes genéticamente susceptibles. Revista médica Uruguay, 21:242-246. http://www.scielo.edu.uy/pdf/rmu/v21n3/v21n3a11.pdf
Razavi, F. E., Zarban, A., Hajipoor, F., & Naseri, M. (2017). The allele frequency of CYP2C9 and VKORC1 in the Southern Khorasan population. Research in pharmaceutical sciences, 12(3), 211–221. https://doi.org/10.4103/1735-5362.207202
Scibona, P., Redal, M. A., Garfi, L. G., Arbelbide, J., Argibay, P. F., & Belloso, W. H. (2012). Prevalence of CYP2C9 and VKORC1 alleles in the Argentine population and implications for prescribing dosages of anticoagulants. Genetics and molecular research : GMR, 11(1), 70–76. https://doi.org/10.4238/2012.January.9.8
Seng, K., Gin, G., Sangkar, V. and Phipps, E. (2003). Frequency of Cytochrome P450 2C9 (CYP2C9) alleles in three ethnic groups in Malaysia. Asia Pacific Journal of Molecular Biology and biotechnology,11(2), 83-91. https://pdfs.semanticscholar.org/265a/677df9c62f76965f7797c375696879fe1bf6.pdf
Shen, A. Y., Yao, J. F., Brar, S. S., Jorgensen, M. B., & Chen, W. (2007). Racial/ethnic differences in the risk of intracranial hemorrhage among patients with atrial fibrillation. Journal of the American College of Cardiology, 50(4), 309–315. https://doi.org/10.1016/j.jacc.2007.01.098
Tavares, L. C., Marcatto, L. R., Soares, R., Krieger, J. E., Pereira, A. C., & Santos, P. (2018). Association Between ABCB1 Polymorphism and Stable Warfarin Dose Requirements in Brazilian Patients. Frontiers in pharmacology, 9, 542. https://doi.org/10.3389/fphar.2018.00542
Tsai, C., Marcus, L. Q., Patel, P., & Battistella, M. (2017). Warfarin Use in Hemodialysis Patients With Atrial Fibrillation: A Systematic Review of Stroke and Bleeding Outcomes. Canadian journal of kidney health and disease, 4, 2054358117735532. https://doi.org/10.1177/2054358117735532
Valentin, I. I., Vazquez, J., Rivera-Miranda, G., Seip, R. L., Velez, M., Kocherla, M., Bogaard, K., Cruz-Gonzalez, I., Cadilla, C. L., Renta, J. Y., Feliu, J. F., Ramos, A. S., Alejandro-Cowan, Y., Gorowski, K., Ruaño, G., & Duconge, J. (2012). Prediction of warfarin dose reductions in Puerto Rican patients, based on combinatorial CYP2C9 and VKORC1 genotypes. The Annals of pharmacotherapy, 46(2), 208–218. https://doi.org/10.1345/aph.1Q190
Valentín, I. I., Rivera, G., Nieves-Plaza, M., Cruz, I., Renta, J. Y., Cadilla, C. L., Feliu, J. F., Seip, R. L., Ruaño, G., & Duconge, J. (2014). Pharmacogenetic association study of warfarin safety endpoints in Puerto Ricans. Puerto Rico health sciences journal, 33(3), 97–104. https://pubmed.ncbi.nlm.nih.gov/25244877/
Villagra, D., Duconge, J., Windemuth, A., Cadilla, C. L., Kocherla, M., Gorowski, K., Bogaard, K., Renta, J. Y., Cruz, I. A., Mirabal, S., Seip, R. L., & Ruaño, G. (2010). CYP2C9 and VKORC1 genotypes in Puerto Ricans: A case for admixture-matching in clinical pharmacogenetic studies. Clinica chimica acta; international journal of clinical chemistry, 411(17-18), 1306–1311. https://doi.org/10.1016/j.cca.2010.05.021
Villegas-Torres, B., Sánchez-Girón, F., Jaramillo-Villafuerte, K., Soberón, X., & Gonzalez-Covarrubias, V. (2015). Genotype frequencies of VKORC1 and CYP2C9 in native and Mestizo populations from Mexico, potential impact for coumarin dosing. Gene, 558(2), 235–240. https://doi.org/10.1016/j.gene.2014.12.068
Wattanachai, N., Kaewmoongkun, S., Pussadhamma, B., Makarawate, P., Wongvipaporn, C., Kiatchoosakun, S., Vannaprasaht, S., & Tassaneeyakul, W. (2017). The impact of non-genetic and genetic factors on a stable warfarin dose in Thai patients. European journal of clinical pharmacology, 73(8), 973–980. https://doi.org/10.1007/s00228-017-2265-8
Yoon, Y. R., Shon, J. H., Kim, M. K., Lim, Y. C., Lee, H. R., Park, J. Y., Cha, I. J., & Shin, J. G. (2001). Frequency of cytochrome P450 2C9 mutant alleles in a Korean population. British journal of clinical pharmacology, 51(3), 277–280. https://doi.org/10.1046/j.1365-2125.2001.00340.x
Zhang, J., Chen, Z., & Chen, C. (2016). Impact of CYP2C9, VKORC1 and CYP4F2 genetic polymorphisms on maintenance warfarin dosage in Han-Chinese patients: A systematic review and meta-analysis. Meta gene, 9, 197–209. https://doi.org/10.1016/j.mgene.2016.07.002
Zhang, H., Ma, K., Liu, W., Yang, F., Liu, J., & Zhou, H. (2016). Impact of CYP2C19 gene polymorphism on warfarin maintenance doses in patients with non-valvular atrial fibrillation. Gene, 591(1), 80–84. https://doi.org/10.1016/j.gene.2016.06.046
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Los autores que publican en esta revista están de acuerdo con los siguientes términos.
- El autor o los autores de los artículos, ensayos o investigaciones conceden a la Universidad Nacional Autónoma de Nicaragua, Managua (UNAN-Managua) los derechos de edición (copyright) del trabajo enviado, por consiguiente la Universidad cuenta con el derecho exclusivo para publicar el artículo durante el periodo completo de los derechos de autor.
- Estos derechos de autor/ autores autorizan a la Revista Torreón Universitario y a la Universidad editar y divulgar/publicar el artículo en dicha Revista, incluyendo reproducción impresa y electrónica, el almacenamiento, recuperación y cualquier otro tipo de publicación, y fuentes de información secundaria como servicios de resúmenes y bases de datos, así mismo la facultan a proteger el artículo contra el uso no autorizado para su difusión por medios impresos o electrónicos (PDF, HTML, EPUB, XML u otros).
Licencia para el uso del contenido
La revista hace uso de la Licencia Creative Commons Atribución-NoComercial-SinDerivar 4.0 Internacional.
Bajo esta declaración:
Este revista está sujeta a una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional. Puede ser copiada, distribuida y transmitida públicamente siempre y cuando se cite al autor y la fuente (Revista Torreón Universitario), no debe modificarse ni utilizarse con ningún fin comercial. La licencia completa se puede consultar en http://creativecommons.org/licenses/by-nc-nd/4.0/.