Effect of vermicompost leachate on lettuce germination in vitro

Authors

  • Aldo Guitérrez Chávez Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Pascual Orozco s/n, Campus 1, Chihuahua, México
  • Loreto Robles Hernández Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Pascual Orozco s/n, Campus 1, Chihuahua, México
  • Rocio Infante Ramírez Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua, México
  • María C. E. Delgado Gardea Facultad de Ciencias Químicas, Universidad Autónoma de Chihuahua, Circuito Universitario s/n, Campus II, Chihuahua, México
  • Jared Hernández Huerta Facultad de Ciencias Agrotecnológicas, Universidad Autónoma de Chihuahua, Pascual Orozco s/n, Campus 1, Chihuahua, México

DOI:

https://doi.org/10.5377/nsj.v37i2.19798

Keywords:

Lettuce, Germination, Phytotoxicity, Sustainable agriculture, Worm leachate

Abstract

Given the pressing global population growth and the escalating demand for food, the adoption of sustainable agricultural practices has become a necessity. In this context, the use of vermicompost leachate (VCL), a nutrient and microorganism-rich organic alternative to chemical fertilizers, has gained significant attention. However, its application necessitates careful consideration due to the potential phytotoxicity it may pose. The experiment was designed to evaluate the effects of various VCL concentrations on lettuce seed germination, vegetative development, photosynthetic pigments, and phytotoxicity in vitro. The concentrations tested ranged from 2.0% to 4.0%. The results revealed a concentration-dependent effect, with lower concentrations (2.0%-2.5%) showing neutral or positive effects on germination and growth, and higher concentrations (3.5%-4.0%) demonstrating phytotoxic effects, leading to reduced germination rates and impaired seedling growth. The analysis of photosynthetic pigments further supported these findings, showing a decrease with increasing VCL concentrations. Principal component analysis further highlighted the concentration-dependent effects of VCL on seed germination and growth. While lower concentrations correlated positively with germination and growth parameters, higher concentrations exhibited negative correlations, indicating greater phytotoxicity. These findings highlighted the complex interplay between VCL concentrations and their effects on seedling growth and development.

Downloads

Download data is not yet available.
Abstract
22
pdf 13

References

Alcívar, M.F., Vera, J.H., Arévalo, O.J., Arévalo, B.D., Pachar, L.E., Castillo, C.B., Carlosama, M.L.K., Arizabal, C.J.A., & Paltán, M.N.D. (2021). Aplicación de lixiviados de vermicompost y respuesta agronómica de dos variedades de pimiento. Revista Colombiana de Ciencia Animal, 13(1), e793. doi: 10.24188/recia.v13.n1.2021.793

Alemán, I., Zulueta, R., Ledea, J.L., Hernández, L.G., & Lara, L. (2022). Evaluación de lixiviado en la producción de fresas, acelgas y lechuga de bola bajo un sistema orgánico. Brazilian Journal of Animal and Environmental Research, 5(2), 1460-1465. doi: 10.34188/bjaerv5n2-002

Ameen, A. (2020). Comparison of crop production efficiency of compost leachate with chemical fertilizer and evaluating its effect on germination and growth of wheat crop. African Journal of Biotechnology, 19(5), 282-286. doi: 10.5897/AJB2020.17091

Ansari, F., & Ksiksi, T.A. (2016). A quantitative assessment of germination parameters: the case of Crotalaria persica and Tephrosia apollinea. Open Ecology Journal, 9(1), 13–21. doi: 10.2174/1874213001609010013

Aremu, A.O., Stirk, W.A., Kulkarni, M.G., Tarkowská, D., Turečková, V., Gruz, J., Subrtová, M., Péncík, A., Novák, O., Dolezál, K., Strnad, M., & Van Staden, J. (2015). Evidence of phytohormones and phenolic acids variability in garden-waste-derived vermicompost leachate, a well-known plant growth stimulant. Plant Growth Regulation, 75, 483-492. doi: 10.100/s10725-014-0011-0

Asciutto, K., Rivera, M.C., Wright, E.R., Morisigue, D., & López, M.V. (2006). Effect of vermicompost on the growth and health of Impatiens wallerana. Phyton, 75, 115.

Benazzouk, S., Dobrev, P.I., Djazouli, Z.E., Motyka, V., & Lutts, S. (2020). Positive impact of vermicompost leachate on salt stress resistance in tomato (Solanum lycopersicum L.) at the seedling stage: a phytohormonal approach. Plant Soil, 446, 145–162. doi: 10.1007/s11104-019-04361-x

Bowers, N., Pratt, J.R., Beeson, D., & Lewis, M. (1997). Comparative evaluation of soil toxicity using lettuce seeds and soil ciliates. Environmental Toxicology and Chemistry Journal, 16(2), 207-213. doi: 10.1002/etc.5620160216

Buriro, M., Oad, F.C., Keerio, M.I., Tunio, S., Gandahi, A.W., Hassan, S.W.U., & Oad, M. (2011). Wheat seed germination under the influence of temperature regimes. Sarhad Journal Agriculture, 27(4), 539-543.

Čabilovski, R., Manojlović, M.S., Popović, B.M., Radojčin, M.T., Magazin, N., Petković, K., Kovačević, D., & Lakićević, M.D. (2023). Vermicompost and vermicompost leachate application in strawberry production: Impact on yield and fruit quality. Horticulturae, 9(3), 337. doi: 10.3390/horticulturae9030337

Campos, I., Montoy, A.C., & Parra, F.I., De Los Santos, S. (2024). Plant-microbial symbiosis toward sustainable food security. Plant Signal Behavior, 19(1), 2298054. doi: 10.1080/15592324.2023.2298054

Chen, J., Shi, H., Sivakumar, B., & Peart, M.R. (2016). Population, water, food, energy, and dams. Renewable and Sustainable Energy Reviews, 56, 18-28. doi: 10.1016/j.rser.2015.11.043

Crist, E., Mora, C., & Enelman, R. (2017). The interaction of human population, food production, and biodiversity protection. Science, 356, 260-264. doi: 10.1126/science.aa12011

David, A.O., Roger, C., Sibonelo, M., & Lindokuhle, T. (2023). Response of vermicompost leachate on seed germination and crop growth. Journal of Eco-friendly Agriculture, 18(1), 1-10. doi: 10.5958/2582-2683.2023.00001.1

De Corato, U. (2019). The market of the minimally processed fresh produce needs of safer strategies for improving shelf life and quality: A critical overview of the traditional technologies. Open Access Journal Agriculture Recourses, 4(1), 23. doi: 10.23880/oajar-16000216

Fan, H., Zhang, Y., Li, J., Jiang, J., Waheed, A., Wang, S., Rasheed, S.M., Zhang, L., & Zhang, R. (2023). Effects of organic fertilizer supply on soil properties, tomato yield, and fruit quality: A global meta-analysis. Sustainability, 15(3), 2556. doi: 10.3390/su15032556

Frederickson, J. (2002). Vermicomposting trial at the worm research center: Part 1- Technical evaluation. Milton Keynes, UK: Integrated Waste Systems. Report No.: Part 1.

Galieni, A., Stagnari, F., Speca, S., & Pisante, M. (2016). Leaf traits as indicators of limiting growing conditions for lettuce (Lactuca sativa). Annals of Applied Biology, 169(3), 342-356.doi: 10.1111/aab.12305

García, E., Nieto, A., Troyo, E., Lucero, G., Murillo, B., Rui, F.H., & Fraga, P.H.C. (2021). Germination of Salicornia bigelovii (Torr.) under shrimp culture effluents and the application of vermicompost leachate for mitigating salt stress. Agronomy, 11(3), 424. doi: 10.3390/agronomy11030424

Gutiérrez, F.A., Llaven, M.A.O., Nazar, P.M., Sesma, B.R., Álvarez, J.D., & Dendooven, L. (2011). Optimization of vermicompost and worm-bed leachate for the organic cultivation of radish. Journal Plant Nutrition, 34(11), 1642-1653. doi: 10.1080/01904167.2011.592561

Hanc, A., Boucek, J., Svehla, P., Dreslova, M., & Tlustos, P. (2017). Properties of vermicompost aqueous extracts prepared under different conditions. Environmental Technology, 38(11), 1428-1434. doi: 10.1080/09593330.2016.1231225

Ievinsh, G. (2020). Review on physiological effects of vermicomposts on plants. Publisher Location: Publisher.

ISO, P. (2012). 11269: 2; Determination of the effects of pollutants on soil flora. Part 2: Effects of contaminated soil on the emergence and early growth of higher plants. International Organization for Standardization (ISO): Geneva, Switzerland.

Kandari, L.S., Kulkarni, M.G., & Van Staden, J. (2011). Vermicompost leachate improves seedling emergence and vigour of aged seeds of commercially grown eucalyptus species. Southern Forests Journal of Forest Science, 73(2), 117-122. doi: 10.2989/20702620.2011.610923

Kaur, A., Singh, B., Ohri, P., Wang, J., Wadhwa, R., & Kaul, S.C. (2018). Organic cultivation of ashwagandha with improved biomass and high content of active withanolides: Use of vermicompost. PLoS One, 13(4). doi: 10.1371/journal.pone.0194314

Lehmann, J., Bossio, D.A., Kögel-Knabner, I., & Rilling, M.C. (2020). The concept and prospects of soil health. Nature Reviews Earth and Environment, 1, 544-553. doi: 10.1038/s43017-020-0080-8

Lichtenthaler, H., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochemical Society Transactions, 11(5), 591–592. doi: 10.1042/bst0110591

Patnaik, P., Chyne, E., Abbasi, T., & Abbasi, S.A. (2022). Vermiwash: An organic fertilizer of great potential. In N. A. Siddiqui, S. M. Tauseef, S. A. Abbasi, R. Dobhal, & A. Kansal (Eds.), Advances in Sustainable Development. Springer, Singapore. doi: 10.1007/978-981-16-4400-9_2

Pittaway, P. (2011). Interpreting results for plant growth promotion and disease suppression bioassays using compost. In I International Symposium on Organic Matter Management and Compost Use in Horticulture. doi: 10.17660/ActaHortic.2014.1018.17

Ranal, M. A., & Garcia, D. (2006). How and why to measure the germination process? Brazilian Journal of Botany, 29(1), 1-11. doi: 10.1590/S0100-84042006000100002

Rehman, S.U., De Castro, F., Aprile, A., Benedetti, M., & Fanizzi, F.P. (2023). Vermicompost: Enhancing plant growth and combating abiotic and biotic stress. Agronomy, 13(4), 1134. doi: 10.3390/agronomy13041134

Riedo, J., Wächter, D., Gubler, A., Wettstein, F., Meuli, E.R.G., & Bucheli, T.D. (2023). Pesticide residues in agricultural soils in light of their on-farm application history. Environment Pollution, 331, 121892. doi: 10.1016/j.envpol.2023.121892

Sanadia, N.F., Van, F.Y., Leea, C.T., Ibrahimc, N., Lid, C., Gao, Y., Gao, D., Onge, P.Y., & Klemeš, J.J. (2019). Nutrient in leachate of biowaste compost and its availability for plants. Chemistry Engineering Transactions, 76, 10.3303. doi: 10.3303/CET1976229

Shaji, H., Chandran, V., & Mathew, L. (2021). Organic fertilizers as a route to controlled release of nutrients. In F. B. Lewu, T. Volova, S. Thomas, & K. R. Rakhimol (Eds.), Controlled Release Fertilizers for Sustainable Agriculture (pp. 231-245). Academic Press.

Singh, T.B., Ali, A., Prasad, M., Yadav, A., Shrivastav, P., Goyal, D., & Dantu, P.K. (2020). Role of organic fertilizers in improving soil fertility. In T.B. Singh, A. Ali, M. Prasad, A. Yadav,

P. Shrivastav, D. Goyal, & P.K. Dantu (Eds.), Contaminants in Agriculture: Sources, Impacts and Management (pp. 61-77). Springer Cham.

Sivasabari, K., Parthasarathy, S., Chandran, D., Sankaralingam, S., & Ajaykumar, R. (2023). Vermicompost y vermi-lixachato en pest and disease management. In H. A. Mupambwa, L. N. Horn, & P. N. S. Mnkeni (Eds.), Vermicomposting for Sustainable Food Systems in Africa (pp. 187-205). Springer. doi: 10.1007/978-981-19-8080-0_17

Sobrero, M.C., & Ronco, A. (2004). Ensayo de toxicidad aguda con semillas de lechuga (Lactuca sativa L.). En G. Castillo (Ed.), Ensayos Toxicológicos y Métodos de Evaluación de Calidad de Aguas (pp. 71-79). Ottawa, Canada.

Tiquia, S. M. (2000). Evaluating phytotoxicity of pig manure from the pig on litter system. In P. R. Warman & B. R. Taylor (Eds.), Proceedings of the International Composting Symposium (pp. 625–647). CBA Press Inc.

Torres, A., Héctor, F.E., León, R., Zambrano, F.E., & Téllez, O.A.F. (2024). Vermicompost leachate-based biostimulant and its effects on physiological variables and yield of different crops in Manabí, Ecuador. Ciencia y Tecnología Agropecuria, 25(1). doi: 10.21930/rcta.vol25_num1_art:3388

Vambe, M., Coopoosamy, R.M., Arthur, G., & Naidoo, K. (2023). Potential role of vermicompost and its extracts in alleviating climatic impacts on crop production. Journal of Agriculture Food Resources, 100585. doi: 10.1016/j.jafr.2023.100585

Wardle, D.A., Ahmed, M., & Nicholson, K.S. (1991). Allelopathic influence of nodding thistle (Carduus nutans L.) seeds on germination and radicle growth of pasture plants. New Zealand Journal of Agriculture Resources, 34, 185–191. doi: 10.1080/00288233.1991.10423358

Warman, P.R., & Ang Lopez, M.J. (2010). Vermicompost derived from different feedstocks as a plant growth medium. Bioresour Technology, 101, 4479–4483. doi: 10.1016/j.biortech.2010.01.098

Wongkiew, S., Polprasert, C., Noophan, P.L., Koottatep, T., Kanokkantapong, V., Surendra, K., & Hhanal, S.K. (2023). Effects of vermicompost leachate on nitrogen, phosphorus, and microbiome in a food waste bioponic system. Journal of Environment Management, 339, 117860. doi: 10.1016/j.jenvman.2023.117860

Downloads

Published

2024-12-31

How to Cite

Guitérrez Chávez, A., Robles Hernández, L., Infante Ramírez, R., Delgado Gardea, M. C. E., & Hernández Huerta, J. (2024). Effect of vermicompost leachate on lettuce germination in vitro. Nexo Scientific Journal, 37(2), 74–88. https://doi.org/10.5377/nsj.v37i2.19798

Issue

Section

Articles

Similar Articles

<< < 3 4 5 6 7 8 9 10 11 12 > >> 

You may also start an advanced similarity search for this article.