On the investment potential of Bessel-Riesz

Authors

  • R. Cerutti Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste

DOI:

https://doi.org/10.5377/nexo.v23i2.239

Keywords:

Riesz potential, hypersingular integral

Abstract

In this paper the inversion of a convolution type operator is obtained by using hypersingular integral technics. The Bessel- Riesz operator of a function φ belonging to S, the space of test functions of Schwartz, is definied by the convolution with the generalized functions Wα(P±i0,m,n) expressible in terms of the Bessel function of first kind Jr Wα(P±i0,m,n) is also an infinite linear combination of the ultrahyperbolic Riesz kernel of differents orders. This fact allows us to invert the Bessel-Riesz potential in an analogue manner of the ultrahyperbolic Bessel potentials (cf. [01]) and causal Riesz potentials (cf. [2]).

Keywords: Riesz potential; hypersingular integral.

DOI: 10.5377/nexo.v23i2.239

Nexo: Revista Científica Vol. 23, No. 02, pp.62-68/Nov 2010

Downloads

Download data is not yet available.
Abstract
1013
PDF (Español (España)) 840

Author Biography

R. Cerutti, Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste

Ruben Alejandro Cerutti: Doctor en Matematica por la Universidad Nacional del Nordeste, UNNE, Argentina y diplomado en Historia de las Ciencias por la Universidad de Zaragoza, España.

Profesor Titular de Analisis de variable compleja en la Facultad de Ciencias Exactas de la UNNE y de Analisis Matematico del Profesorado en Matematica de la Universidad Nacional de Formosa,Argentina.

How to Cite

Cerutti, R. (2010). On the investment potential of Bessel-Riesz. Nexo Revista Científica, 23(2), 62–68. https://doi.org/10.5377/nexo.v23i2.239

Issue

Section

Articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.