Data cleaning in financial analysis

Authors

DOI:

https://doi.org/10.5377/reice.v1i2.18869

Keywords:

Analysis tools, Data Cleaning Methods and Techniques, Financial Analysis

Abstract

Cleaning databases was crucial for effective financial analysis, improving data quality, reducing errors and optimizing resources. This process included identifying and removing irrelevant and duplicate data, as well as correcting errors and inconsistent data. Database management tools, data duplicators and validators were used, respecting the privacy and protection of personal data according to applicable regulations. The results showed that database cleaning is essential for the integrity and quality of data in financial analysis, fundamental for business sustainability. Upon completion, comfort with the analysis and information obtained was improved, increasing efficiency and productivity in financial analysis. Much data was found to be unstructured, making it difficult to optimize processing. Continuous data generation complicated collection and management. The analysis allowed us to decompose and synthesize the definition of data cleaning, methods and techniques for its execution, and processing mechanisms. Various tools were also presented to manage information, providing ideas to innovate, grow in the long term and create more effective strategies, improving efficiency and productivity in financial analysis.

Downloads

Download data is not yet available.
Abstract
155
PDF (Español (España)) 69

References

Ahmed, I., & Aziz, A. (2010). Dynamic Approach for Data Scrubbing Process. (Enfoque dinámico para el proceso de depuración de datos) International Journal on Computer Science and Engineering, 2 (2), 416-423.

Castillo Noguera María José, Santos Solares José Adolfo. Limpieza de Datos (2015).

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. (De la minería de datos al descubrimiento de conocimientos en bases de datos) American Association for Artificial Intelligence, 37-54.

Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. (Minería de datos: conceptos y técnicas) Estados Unidos: Elsevier.

Hernández Orallo José, María José Ramírez Quintana, & María Adela Gutiérrez Díaz. Pearson Educación, 2014. "Minería de datos: Conceptos y técnicas"

Information Builders. (2011). Data Quality: It’s no joke. (Calidad de datos: no es una broma) Obtenido de Insights - Trends & Technologies: - http://informationbuilders.co.uk/new/insights/UKNewsletterQ1.html (constructores de información).

Kitlas, J. (2012). Dirty Data. (Datos sucios) Obtenido de Subject Guides - Syracuse University Library: http://researchguides.library.syr.edu/content.php?pid=156265&sid=2578897

Laia Subirats Maté Diego Oswaldo Pérez Trenard Mireia Calvo González (2019). Introducción a la limpieza y análisis de los datos.

Maletic, J. I., & Marcus, A. (2000). Data Cleansing: (Limpieza de datos) Beyond Integrity Analysis. Obtenido de Proceedings of the Conference on Information Quality (IQ2000), Boston, October 2000: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5212

Maletic, J., & Marcus, A. (2010). Data Cleansing: ((Limpieza de datos) A prelude to knowledge discovery. En O. Maimon, & L. Rokach, Data Mining and Knowledge Discovery -Handbook (págs. 21-36). New York: Springer.

Mar Pérez Sanagustín & José A. Ruipérez Valiente. Editorial Universitat Oberta de Catalunya, 2019. "Data Science: Limpieza, análisis y visualización de datos".

Maydanchik, A. (2007). Data Quality Assessment. (Evaluación de la calidad de los datos) Estados Unidos: Technics Publications, LLC. Müller, H., & Freytag, J.-C. (2003). Problems, Methods, and Challenges in Comprehensive. Data Cleansing. Berlin: Humboldt University Berlin.

Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment. Communications of the ACM, 211-218. (Evaluación de la calidad de los datos).

Rahm, E., & Do, H. H. (2000). Data Cleaning: (Limpieza de datos) Problems and Current Approaches. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering , 1-11. Recuperado desde http://www.acm.org/sigs/sigmod/disc/disc01/out/websites/deb_december/rahm.pdf.

Sánchez González Jorge Jesús. Editorial Marcombo, 2018. "Análisis de Datos con Excel: Una guía práctica para la limpieza y análisis de datos".

Van den Broeck, J., Argeseanu Cunningham, S., Eeckels, R., & Herbst, K. (2005). Data cleaning: Detecting,diagnosing, and editing data abnormalities. PLoS Medicine, 2 (10), e267. (Limpieza de datos: detección, diagnóstico y edición de anomalías en los datos).

Published

2024-10-04

How to Cite

Cruz Orozco, O. J. (2024). Data cleaning in financial analysis. Revista Electrónica De Investigación En Ciencias Económicas, 100–130. https://doi.org/10.5377/reice.v1i2.18869

Issue

Section

Research Articles