Data cleaning in financial analysis
DOI:
https://doi.org/10.5377/reice.v1i2.18869Keywords:
Analysis tools, Data Cleaning Methods and Techniques, Financial AnalysisAbstract
Cleaning databases was crucial for effective financial analysis, improving data quality, reducing errors and optimizing resources. This process included identifying and removing irrelevant and duplicate data, as well as correcting errors and inconsistent data. Database management tools, data duplicators and validators were used, respecting the privacy and protection of personal data according to applicable regulations. The results showed that database cleaning is essential for the integrity and quality of data in financial analysis, fundamental for business sustainability. Upon completion, comfort with the analysis and information obtained was improved, increasing efficiency and productivity in financial analysis. Much data was found to be unstructured, making it difficult to optimize processing. Continuous data generation complicated collection and management. The analysis allowed us to decompose and synthesize the definition of data cleaning, methods and techniques for its execution, and processing mechanisms. Various tools were also presented to manage information, providing ideas to innovate, grow in the long term and create more effective strategies, improving efficiency and productivity in financial analysis.
Downloads
155
References
Ahmed, I., & Aziz, A. (2010). Dynamic Approach for Data Scrubbing Process. (Enfoque dinámico para el proceso de depuración de datos) International Journal on Computer Science and Engineering, 2 (2), 416-423.
Castillo Noguera María José, Santos Solares José Adolfo. Limpieza de Datos (2015).
Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge Discovery in Databases. (De la minería de datos al descubrimiento de conocimientos en bases de datos) American Association for Artificial Intelligence, 37-54.
Han, J., Kamber, M., & Pei, J. (2012). Data Mining: Concepts and Techniques. (Minería de datos: conceptos y técnicas) Estados Unidos: Elsevier.
Hernández Orallo José, María José Ramírez Quintana, & María Adela Gutiérrez Díaz. Pearson Educación, 2014. "Minería de datos: Conceptos y técnicas"
Information Builders. (2011). Data Quality: It’s no joke. (Calidad de datos: no es una broma) Obtenido de Insights - Trends & Technologies: - http://informationbuilders.co.uk/new/insights/UKNewsletterQ1.html (constructores de información).
Kitlas, J. (2012). Dirty Data. (Datos sucios) Obtenido de Subject Guides - Syracuse University Library: http://researchguides.library.syr.edu/content.php?pid=156265&sid=2578897
Laia Subirats Maté Diego Oswaldo Pérez Trenard Mireia Calvo González (2019). Introducción a la limpieza y análisis de los datos.
Maletic, J. I., & Marcus, A. (2000). Data Cleansing: (Limpieza de datos) Beyond Integrity Analysis. Obtenido de Proceedings of the Conference on Information Quality (IQ2000), Boston, October 2000: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.37.5212
Maletic, J., & Marcus, A. (2010). Data Cleansing: ((Limpieza de datos) A prelude to knowledge discovery. En O. Maimon, & L. Rokach, Data Mining and Knowledge Discovery -Handbook (págs. 21-36). New York: Springer.
Mar Pérez Sanagustín & José A. Ruipérez Valiente. Editorial Universitat Oberta de Catalunya, 2019. "Data Science: Limpieza, análisis y visualización de datos".
Maydanchik, A. (2007). Data Quality Assessment. (Evaluación de la calidad de los datos) Estados Unidos: Technics Publications, LLC. Müller, H., & Freytag, J.-C. (2003). Problems, Methods, and Challenges in Comprehensive. Data Cleansing. Berlin: Humboldt University Berlin.
Pipino, L. L., Lee, Y. W., & Wang, R. Y. (2002). Data Quality Assessment. Communications of the ACM, 211-218. (Evaluación de la calidad de los datos).
Rahm, E., & Do, H. H. (2000). Data Cleaning: (Limpieza de datos) Problems and Current Approaches. Bulletin of the IEEE Computer Society Technical Committee on Data Engineering , 1-11. Recuperado desde http://www.acm.org/sigs/sigmod/disc/disc01/out/websites/deb_december/rahm.pdf.
Sánchez González Jorge Jesús. Editorial Marcombo, 2018. "Análisis de Datos con Excel: Una guía práctica para la limpieza y análisis de datos".
Van den Broeck, J., Argeseanu Cunningham, S., Eeckels, R., & Herbst, K. (2005). Data cleaning: Detecting,diagnosing, and editing data abnormalities. PLoS Medicine, 2 (10), e267. (Limpieza de datos: detección, diagnóstico y edición de anomalías en los datos).
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright (c) Revista Electronica de Investigacion en Ciencias Economicas
The rights to the articles published in REICE are from the journal, in order to be able to manage their best dissemination. However, since the purpose of the same is the dissemination of knowledge, this journal provides immediate free access to its content, under the principle that making research available to the public free of charge, which fosters a greater exchange of global knowledge.
The opinions expressed by the authors do not necessarily reflect the position of the publisher of the publication or of the UNAN-Managua. Its reproduction and distribution is authorized (in any type of support) provided that the following indications are fulfilled:
- The authorship of the work
- Indicate its origin (REICE magazine, volume, number and electronic address of the document)