A simple experiment to evaluate the uncertainty following the guide GUM ISO 1995 and using MAPLE symbolic computation 11.0

Authors

DOI:

https://doi.org/10.5377/universitas.v2i1.1639

Keywords:

Uncertainty in the measurement of the area of a triangle, calculation of sensitivity coefficient using Maple, expanded relative uncertainty (uER), chemical metrology, uncertainty balance or budget

Abstract

The objective of this study is to estimate the uncertainty in the measurement of the total area of a triangle by applying the GUM ISO 1995 uncertainty estimation guide and using the symbolic calculation program MAPLE 11. The measurements were made by a group of 10 students from the Master's program in Chemistry and Quality Management, using the same measurement object and the same measurement instrument. The mathematical model was derived, the components of uncertainty were identified through a cause-effect diagram, the sensitivity coefficients were calculated using the Maple 11 symbolic calculation program, and a balance of uncertainties was created along with a Pareto diagram reflecting the variables that most influence the uncertainty of the measured quantity. The combined and expanded uncertainties were calculated with a coverage factor equal to t at a 95% confidence level and 22 effective degrees of freedom. Finally, the confidence interval was evaluated, resulting in a value of (50.72 ± 0.39) cm². The expanded relative uncertainty was less than 1%, indicating good precision in the measurement process.

Downloads

Abstract
1103
PDF (Español (España)) 1541

Author Biographies

G. Delgado-Alvarado, National Autonomous University of Nicaragua, León. Nicaragua

Researcher at the Faculty of Science and Technology, Department of Chemistry, Heavy Metal Trace Analysis Laboratory, National Autonomous University of Nicaragua, León.

B. Nagel, PTB Consultant (German Metrology Institute), Leipzig, Germany.

Consultant Researcher at PTB (German Metrology Institute), Leipzig, Germany.

References

1. LeY N° 225 (1996). "Ley sobre Metrología", La Gaceta No. 135, República de Nicaragua.

2. ISO/IeC 17000 (eS) (2004). "evaluación de la conformidad - Vocabulario y Principios Generales", Ginebra.

3. ISO/IeC 17011(eS) (2004). "evaluación de la conformidad - Requisitos generales para los organismos de acreditación que realizan la acreditación de organismos de evaluación de la conformidad", Norma Internacional, Ginebra

4. ISO/IeC 17025(eS) (2005). "Requisitos Generales para la Competencia de los Laboratorios de ensayo y de Calibración", Norma Internacional, Ginebra, Segunda edición.

5. ILAC-G8 (1966). "Guidelines on Assessment and Reporting of compliance with specification".

6. BIPM, IeC, IFCC, IUPAC, OIML (1995). Guide for to the expression of Uncertainty in Measurement (GUM), ISO, Ginebra.

7. NISt (1993). "Guidelines for evaluation and expressing the uncertainty of NISt measurement results", Gaithersburg, USA.

8. SCHMID, W.A. y LAZOS, R.j. (2000), "Guía para estimar la incertidumbre de la medición", CeNAM, México.

9. EURACHeRM/CItAC GUIDe, (2000), Quantifying Uncertainty in Analytical Chemistry, 2da edición, UK.

10. DeLGADO M, VANeGAS M y DeLGADO G. (2007), "Metrología Química I: Calibración de un pH-metro y control de calidad", UNIVeRSItAS UNAN-León, 1, 14-20.

https://doi.org/10.5377/universitas.v1i1.1627

11. DeLGADO M, VANeGAS M y DeLGADO G. (2007) "Metrología Química II: estimación de la incertidumbre en la medición de pH en aguas", UNIVeRSItAS UNAN-Léon, 2, 19-26.

https://doi.org/10.5377/universitas.v2i1.1639

12. YAteS P. C. (2001), "A simple for illustrating uncertainty analysis", journal of Chemical education, 78, 770-771.

https://doi.org/10.1021/ed078p770

13. a) CHAR b. W. (1992), Maple V, Springer-Verlag, New York, pag. 41; b) Maple 11, software.

14. ISO 9000:2000 (eS), (2000), Sistemas de Gestión de la Calidad. Fundamentos y Vocabulario.

15. KIMOtHI, S.K., (2002), the Uncertainty of Measurements, ASQ Quality Press, Wisconsin , pag. 205.

16. EURACHeM/CItAC GUIDe, (2003), treceability in chemical measurement, Guía de Referencia, 1ra. edición, UK.

17. DeAN, j. A. (1979), Lange ́s Hanbook of Chemistry, McGraw Hill, pag. 10-119.

18. NeULLY, M. (1998), Modélisation et estimation des erreurs de mesure, technique & Documentation, 2ª edición, pag. 296.

19. WODSWORtH, H. M., StePHeNS, K. y GODFReY, A. b. (2005), Métodos de Control de Calidad, México, Compañía editorial Continental, 1ra. edición, p. 362.

20. CHRZANOW (2002). "For evaluation of uncertainty in mesasurements", joint IMeKO tC-1 & XXXIV Conference 2002, 11- 12 septiembre, Warsaw.

Published

2008-07-03

How to Cite

Delgado Alvarado, G., & Nagel, B. (2008). A simple experiment to evaluate the uncertainty following the guide GUM ISO 1995 and using MAPLE symbolic computation 11.0. Universitas (León) , 2(1), 19–26. https://doi.org/10.5377/universitas.v2i1.1639

Issue

Section

Articles