Fitorremediación de suelos contaminados por metales pesados: una revisión

Autores/as

  • Maybis Eugenia López Hernández Universidad Nacional Autónoma de Nicaragua UNAN Managua, Nicaragua https://orcid.org/0000-0002-4523-3129
  • Osman Enrique Morales Hernández Instituto Nicaragüense de Energía-INE, Nicaragua

DOI:

https://doi.org/10.5377/elhigo.v12i2.15197

Palabras clave:

Fitorremediación de suelos contaminados, Metales Pesados, biodisponibilidad, desafíos, disposición de la biomasa

Resumen

El presente artículo tiene como objetivo proporcionar una descripción de los conceptos básicos de la fitorremediación como una tecnología amigable y viable para la remediación de los suelos por metales pesados. Mediante la recopilación de documentación en base de datos confiables y una revisión de literatura disponible, se incluyeron publicaciones vinculados a la fitorremediación de sitios contaminados. Dentro de la fitorremediación existen diferentes estrategias como la fitoextracción, fitoestabilización y fitovolatilización, que poseen ventajas como la remoción permanentemente de los metales del suelo sin alterar la calidad del suelo, contribuye a restaurar la vegetación del sitio y reducir la erosión del suelo, además, se puede aplicar de manera in situ o e x situ. Sin embargo, entre sus desventajas se encuentra el periodo de tiempo prolongado, la fitotoxicidad de las plantas y biodisponibilidad del metal, y el tratamiento de la biomasa contaminada cuyas alternativas de manejo incluyen su deposición en vertederos para desechos peligrosos o incineración para la purificación y recuperación de los metales pesados. Otra alternativa es la utilización de la biomasa como bioenergía, no obstante, existe poco conocimiento sobre las emisiones que se podrían generar durante este proceso. Entre los desafíos de la fitorremediación se encuentran la baja tasa de crecimiento de las plantas, raíces poco profundas y poca producción de biomasa, así como las plagas y enfermedades que pueden reducir la eficiencia en la remoción de los contaminantes. La fitorremediación ha tenido un gran auge en los últimos años, sin embargo, aún hay desafíos que enfrentar para lograr una fitorremediación sostenible.

Descargas

Los datos de descargas todavía no están disponibles.
Resumen
3247
PDF 2474

Biografía del autor/a

Maybis Eugenia López Hernández, Universidad Nacional Autónoma de Nicaragua UNAN Managua, Nicaragua

Licenciada Química, estudiante de Maestría en Ciencias Ambientales con Mención en Gestión Ambiental del Programa de Investigación de Estudios Nacionales y Servicios del Ambiente (PIENSA) de la UNI. Responsable de laboratorio de Fisicoquímica en el Centro de Investigación en Biotecnología de UNAN-Managua.

Osman Enrique Morales Hernández, Instituto Nicaragüense de Energía-INE, Nicaragua

Ingeniero Industrial y de Sistemas (UNAN-Managua); Posgrado en Gerencia de Operaciones Centrado en la Calidad (UNI); Estudiante de Maestría en Ciencias Ambientales con Mención en Gestión Ambiental del Programa de Investigación de Estudios Nacionales y Servicios del Ambiente (PIENSA) de la UNI. Especialista Ambiental del Instituto Nicaragüense de Energía-INE.

Citas

Ali H., Khan E. & Anwar Sajad M. (2013). Phytoremediation of heavy metals—Concepts and applications. Elsevier, 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

Ashraf S., Ali Q., Ahmad Zahir Z., Ashraf S. & Naeem Asghar H. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Elsevier, 714-727. https://doi.org/10.1016/j.ecoenv.2019.02.068.

Banco Central de Nicaragua. (2021). Informe annual 2021. Obtenido de: https://www.bcn.gob.ni/sites/default/files/documentos/Informe_Anual_2021.pdf

Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Beth Kirkham M & Scheckel K. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Elsevier, 141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018.

Centro Humboldt. (2017). La pequeña minería y minería artesanal en Nicaragua. Obtenido de: https://humboldt.org.ni/la-pequena-mineria-y-mineria-artesanal-en-nicaragua/

Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002

FAO (Organización de las naciones Unidas para la Agricultura), Rodriguez, N., Michael, & Pennock, D. (2019). La contaminación del suelo: una realidad oculta. In Organizacion de las Naciones Unidas para la alimentacion y la agricultura FAO. http://www.fao.org/3/I9183ES/i9183es.pdf

Gomes H. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environmental Technology Reviews, 59-66. http://dx.doi.org/10.1080/09593330.2012.696715.

Hooda P. (2010). Trace elements in soil. General Soil Chemestry, Principles and Processes, 9-37. School of Geography, Geology and the Environment, Kingston University London, UK. A John Wiley and Sons, Ltd, Publication. DOI:10.1002/9781444319477

Hui Awa S. & Hadibarata T. (2020). Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Springer Nature Switzerland AG, 231:47. https://doi.org/10.1007/s11270-020-4426-0.

Laghlimi M., Baghdad B., El Hadi H. & Bouabdli A. (2015). Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open Journal of Ecology, 75-388. http://dx.doi.org/10.4236/oje.2015.58031.

Lasat, M. M. (1999). Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. Journal of Hazardous Substance Research:, 1-25. https://doi.org/10.4148/1090-7025.1015 .

Mahar A., Wang P., Ali A., Kumar Awasthi M., Hussain Lahori A., Wang Q., Li R. & Zhang Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Elsevier, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023.

McIntyre, T. . (2003). Phytoremediation of Heavy Metals from Soils. In: Tsao, D.T. (eds) Phytoremediation. Advances in Biochemical Engineering/Biotechnology, vol 78. En P. T. P.K., Chapter 18. Phytoremediation of Heavy Metal Contaminated Soils (págs. 417-418). Berlin, Heidelberg: Springer.

Naidu, R., Channey, R., McConnell, S., Johnston, N., Semple, K.T., McGrath, S., Dries, V., Nathanail, P., Harmsen, J., Pruszinski, A., MacMillan, J. & Palanisami, T. 2015. Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental Science and Pollution Research, 22(12): 8779–8785. https://doi.org/10.1007/s11356-013-1617-x

Pivetz B. (2001). Ground Water Issue. Obtenido de EPA ORD: https://www.epa.gov/sites/default/files/2015-06/documents/epa_540_s01_500.pdf

Prieto Méndez, J., González Ramírez, C. A., Román Gutiérrez, A. D., & Prieto García, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), 29–44. http://www.redalyc.org/articulo.oa?id=93911243003

Ali H., Khan E. & Anwar Sajad M. (2013). Phytoremediation of heavy metals—Concepts and applications. Elsevier, 869-881. https://doi.org/10.1016/j.chemosphere.2013.01.075.

Ashraf S., Ali Q., Ahmad Zahir Z., Ashraf S. & Naeem Asghar H. (2019). Phytoremediation: Environmentally sustainable way for reclamation of heavy metal polluted soils. Elsevier, 714-727. https://doi.org/10.1016/j.ecoenv.2019.02.068.

Banco Central de Nicaragua. (2021). Informe annual 2021. Obtenido de: https://www.bcn.gob.ni/sites/default/files/documentos/Informe_Anual_2021.pdf

Bolan N., Kunhikrishnan A., Thangarajan R., Kumpiene J., Park J., Makino T., Beth Kirkham M & Scheckel K. (2014). Remediation of heavy metal(loid)s contaminated soils – To mobilize or to immobilize? Elsevier, 141-166. https://doi.org/10.1016/j.jhazmat.2013.12.018.

Centro Humboldt. (2017). La pequeña minería y minería artesanal en Nicaragua. Obtenido de: https://humboldt.org.ni/la-pequena-mineria-y-mineria-artesanal-en-nicaragua/

Cristaldi, A., Conti, G. O., Jho, E. H., Zuccarello, P., Grasso, A., Copat, C., & Ferrante, M. (2017). Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology and Innovation, 8, 309–326. https://doi.org/10.1016/j.eti.2017.08.002

FAO (Organización de las naciones Unidas para la Agricultura), Rodriguez, N., Michael, & Pennock, D. (2019). La contaminación del suelo: una realidad oculta. In Organizacion de las Naciones Unidas para la alimentacion y la agricultura FAO. http://www.fao.org/3/I9183ES/i9183es.pdf

Gomes H. (2012). Phytoremediation for bioenergy: challenges and opportunities. Environmental Technology Reviews, 59-66. http://dx.doi.org/10.1080/09593330.2012.696715.

Hooda P. (2010). Trace elements in soil. General Soil Chemestry, Principles and Processes, 9-37. School of Geography, Geology and the Environment, Kingston University London, UK. A John Wiley and Sons, Ltd, Publication. DOI:10.1002/9781444319477

Hui Awa S. & Hadibarata T. (2020). Removal of Heavy Metals in Contaminated Soil by Phytoremediation Mechanism: a Review. Springer Nature Switzerland AG, 231:47. https://doi.org/10.1007/s11270-020-4426-0.

Laghlimi M., Baghdad B., El Hadi H. & Bouabdli A. (2015). Phytoremediation Mechanisms of Heavy Metal Contaminated Soils: A Review. Open Journal of Ecology, 75-388. http://dx.doi.org/10.4236/oje.2015.58031.

Lasat, M. M. (1999). Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. Journal of Hazardous Substance Research:, 1-25. https://doi.org/10.4148/1090-7025.1015 .

Mahar A., Wang P., Ali A., Kumar Awasthi M., Hussain Lahori A., Wang Q., Li R. & Zhang Z. (2016). Challenges and opportunities in the phytoremediation of heavy metals contaminated soils: A review. Elsevier, 111-121. https://doi.org/10.1016/j.ecoenv.2015.12.023.

McIntyre, T. . (2003). Phytoremediation of Heavy Metals from Soils. In: Tsao, D.T. (eds) Phytoremediation. Advances in Biochemical Engineering/Biotechnology, vol 78. En P. T. P.K., Chapter 18. Phytoremediation of Heavy Metal Contaminated Soils (págs. 417-418). Berlin, Heidelberg: Springer.

Naidu, R., Channey, R., McConnell, S., Johnston, N., Semple, K.T., McGrath, S., Dries, V., Nathanail, P., Harmsen, J., Pruszinski, A., MacMillan, J. & Palanisami, T. 2015. Towards bioavailability-based soil criteria: past, present and future perspectives. Environmental Science and Pollution Research, 22(12): 8779–8785. https://doi.org/10.1007/s11356-013-1617-x

Pivetz B. (2001). Ground Water Issue. Obtenido de EPA ORD: https://www.epa.gov/sites/default/files/2015-06/documents/epa_540_s01_500.pdf

Prieto Méndez, J., González Ramírez, C. A., Román Gutiérrez, A. D., & Prieto García, F. (2009). Contaminación y fitotoxicidad en plantas por metales pesados provenientes de suelos y agua. Tropical and Subtropical Agroecosystems, 10(1), 29–44. http://www.redalyc.org/articulo.oa?id=93911243003

Singh Kanwar V., Sharma A., Lal Srivastav A. & Rani L. (2020). Phytoremediation of toxic metals present in soil and water environment: a critical review. Springer, 44835–44860. https://doi.org/10.1007/s11356-020-10713-3.

Shah, V., & Daverey, A. (2020). Environmental Technology & Innovation Phytoremediation : A multidisciplinary approach to clean up heavy metal contaminated soil. Environmental Technology & Innovation, 18, 100774. https://doi.org/10.1016/j.eti.2020.100774

Shehata S., Badawy R. & Aboulsoud Y. (2019). Phytoremediation of some heavy metals in contaminated soil. Springer Open, 1-15. https://doi.org/10.1186/s42269-019-0214-7.

Wuana R. & Okieimen F. (2011). Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. International Scholarly Research Network ISRN Ecology, 1-21. DOI:10.5402/2011/402647.

Descargas

Publicado

2022-12-01

Cómo citar

López Hernández, M. E. ., & Morales Hernández, O. E. . (2022). Fitorremediación de suelos contaminados por metales pesados: una revisión. Revista Ciencia Y Tecnología El Higo, 12(2), 15–28. https://doi.org/10.5377/elhigo.v12i2.15197

Número

Sección

Artículos científicos de revisión