Simulación numérica del péndulo de Foucault con Octave

Authors

  • Marco Reyes Universidad Nacional Autónoma de Honduras en el Valle de Sula
  • Nestor Pineda Universidad Nacional Autónoma de Honduras en el Valle de Sula

DOI:

https://doi.org/10.5377/ref.v2i2.8284

Keywords:

Pendulum, rotation, precession

Abstract

A review of the Foucault pendulum is performed, considering the numerical approach, the study of many problems in classical mechanics can focus naturally using computational tools, and the problem of Foucault pendulum is an example of this. The Foucault pendulum is a simple pendulum basically set in a non-inertial reference frame. By taking into account the rotation of the Earth the pendulum makes a slight movement of precession, we can predict the movement to formulate and solve the dynamic equations associated with the pendulum, these equations are derived from Newton’s laws considering the pseudo force arises by including the rotation of the Earth. To solve the coupled differential equations of the Foucault pendulum, we used the algorithms of Euler-Cromer , Runge Kutta second order Runge Kutta fourth order, all these results are similar algorithms are used to plot the trajectory of the pendulum in polar coordinates , closed paths precess features are observed precession motion.

Downloads

Download data is not yet available.
Abstract
877
PDF (Español (España)) 1523

Published

2014-12-19

How to Cite

Reyes, M., & Pineda, N. (2014). Simulación numérica del péndulo de Foucault con Octave. Revista De La Escuela De Física, 2(2), 75–81. https://doi.org/10.5377/ref.v2i2.8284

Issue

Section

Investigation