Simulation of the recharge process for groundwater using Artificial Neural Networks as an Approximation Method in the Las Sierras Aquifer, Nicaragua

Authors

DOI:

https://doi.org/10.5377/rtu.v12i33.15896

Keywords:

Hydrogeology, Artificial Neural Networks (ANN), Machine Learning (ML)

Abstract

The knowledge of hydrogeologial system functionality, is a vital importance for its management and sustainable development. One of the variables and main input it feeds this system is Recharge (R) product of precipitation (P). The purpose of this study is desing a No Lineal Regresor Model using Artificial Neural Networks (ANN). For the above, with INETER data collected, it was estimate R using input variables for instance: precipitation (P), soil textures and other known environmental variables in Managua Aquifer. With the information collected, data exploration or 'Data mining' was carried out through descriptive statistics, which allows presenting, interpreting and analyzing the data in a comprehensive way. Using the Python programming language ​(Rossum, 1991)​ and the JupyterLab work environment, the ANN elements were developed through the Scikit-Learn library or better known as Sklearn ​(Cournapeau, 2010)​. After the iterations and settings of hyperparameters, a better fit will be improved using the cost function, which determines the error between the estimated value and the observed value, in order to optimize the parameters of ANN. At the end, the final configurations of ANN are indicated for each soil texture.

Downloads

Download data is not yet available.
Abstract
221
PDF (Español (España)) 149
VISOR (Español (España)) 0
HTML (Español (España)) 192
PDF 12
HTML 8

References

​​​ASCE. (2000). Artificial neural networks in hydrology. J. Hydrol. Eng.

​Corea, F. V. (2014). Predicción espacio temporal de la irradiancia solar global a corto plazo en España mediante geoestadistica y redes neuranales artificiales. España.

​Cortez, P., Rocha, M., Allegro, F., & Neves, J. (2002). Real-time forecasting by bio-inspired models. In. Proceeding of the Artifical Intelligence and Applications. Málaga, Spain.

​Cournapeau, D. (07 de 2010). Scikit - Learn. https://scikit-learn.org/stable/

​D. Hunter, J. (2003). Matplotlib. Matplotlib: https://matplotlib.org/

​FAO. (2013). https://coin.fao.org/. https://coin.fao.org/: https://coin.fao.org/coin-static/cms/media/5/12820625348650/fao_nic_recursoshidricos_cepal.pdf

​Galelli, S., G. B., H., H. R. Maier, A., G. C., D., & M. S., G. (62, 33–51). An evaluation framework for input variable selection algorithms for environmental data-driven models. Environ. Modell. Software, 2014.

​Glorot, X., Bordes, A., & Bengio, Y. (01 de 01 de 2010). Deep Sparse Rectifier Neural Networks. Journal of Machine Learning Research.

​Hornik, K., M., S., & H., W. (1989). Multilayer feedforward networks are universal approximators. Neural Networks, 2(5), 359–366.

​INAA/JICA. (1993). Estudio sobre el Proyecto de Abastecimiento de Agua en Managua. Managua.

​INETER. (2004). Mapa de las Provincias Geológicas de Nicaragua. INETER, Managua.

​INETER. (2020). Estudio de Potencial de Recarga Hidrica y Deficit de agua Subterránea. Managua: Nicaragua.

​INETER. (2020). Informe de Modelo Numerico del Acuifero de las Sierras. Managua: Nicaragua.

​INETER. (2021). Atlas Nacional de suelo: Mapa de Textura de suelo. Managa: Nicaragua.

​INETER. (13 de 06 de 2022). Atlas Climáticos. Período 1971 - 2010. Instituto Nicaraguense de Estudios Territoriales, Managua. Retrieved 2022, from https://www.ineter.gob.ni/

​Kenda K, P., & Klemen, K. (2019). Groundwater Modeling with Machine Learning Techniques. Inst Proc.

​Köppen, W. P. (1918). Klassifikation der Klimate nach Temperatur. Hamburg.

​Losilla, M., Rodriguez, H., Stimson, J., & Bethune, D. (2001). Los Acuifero Volcánicos y el Desarrollo sostenible en America Central. San José: Editorial Universidad de Costa Rica.

​Maier, H., & G. C., D. (2000). Neural networks for the prediction and forecasting of water resources variables: A review of modelling issues and applications. Environ. Modell. Software, 15(1), 101–124.

​McKinney, W. (2008). Pandas. https://pandas.pydata.org/

​Oliphant, T. (2005). NumPy. NumPy: https://numpy.org/

​Pedregosa, F., Varoquaux, G., & Gramfort , A. (2010). Scikit-learn: Machine Learning in Python. JMLR 12, 2011, 2825-2830. Scikit-learn: Machine Learning in Python: https://scikit-learn.org/stable/

​Pham, Q., Kumar, M., Di Nunno, F., & Elbeltagi, A. (2022). Groundwater level prediction using machine learning algorithms in a. Springer.

​Quilty, J., J. Adamowski, B., & M., R. (2016). Bootstrap rank-ordered conditional mutual information (broCMI): A nonlinear. Water Resour. Res, 52, 2299–2326.

​Reed, R., & Marks, R. (1999). Neural smithing supervised learning in feedforward neural networks. Mit Press.

​Rossum, G. v. (1991). https://www.python.org/

​S. Sahoo, T.A, R., J., E., & I., F. (2017). Machine Learning Algorithms for Modeling Groundwater Level changes in agricultural regions of the US. AGUPUBLICATIONS, 53,3878-3895.

​Schosinsky, G., & Losilla, M. (2006). Cálculo de la recarga potencial de acuíferos mediante un balance hídrico de suelos. Revista Geológica de América Central, 34-35, 13-30. .

​Shortridge J.E, G. (2019). Machine Leaning methos for empirical streamflow simulation.

​Tao, H., Hameed, M., Marhoon, H., Zounemat-Kermani, M., Heddam, S., Kim, S., . . . Saadi, Z. (2022). Groundwater Level Prediction using Machine Learning Models:A Comprehensive Review. ELSEVIER.

​Thornthwaite, C. W. (1948). An Approach Toward a Rational Classification of Climate. American Geographical Society.

​Wasserman, P. (1989). Neural computing: theory and practice. New York: Van Nostrand Reinhold.

​Werbos, P. (1994). The Roots of Backpropagation From Ordered Derivatives to Neural Networks and Political Forecasting. New York, USA: Wiley Intercescience Publication.

Published

2023-03-17

How to Cite

Chevez, C. R. ., Pinell, F., & Mejía Quiroz, Álvaro A. (2023). Simulation of the recharge process for groundwater using Artificial Neural Networks as an Approximation Method in the Las Sierras Aquifer, Nicaragua. Torreon Universitario Magazine, 12(33), 112–125. https://doi.org/10.5377/rtu.v12i33.15896

Issue

Section

Engineering, Industry and Construction