Evaluation of the efficiency of arsenic removal in water with activated carbon from jícaro sabanero (Crescentia alata) and its combination with iron oxides

Authors

  • Kathia Vanessa Rojas Cerda National Autonomous University of Nicaragua, Managua. Center for Research in Aquatic Resources of Nicaragua

DOI:

https://doi.org/10.5377/torreon.v9i24.9724

Keywords:

arsenic, activated carbon, iron oxides, removal

Abstract

According to the World Health Organization, arsenic is one of the most dangerous chemicals in the world, due to its potential of causing a wide variety of diseases since diabetes until lung and skin cancers, among others. Therefore, it is important to develop techniques to remove it from drinking water. This study evaluated the arsenic removal efficiency from water using two sorbent media, iron oxides and artisanal activated carbon, in experiments conducted by duplicate for carbon and by triplicate for the sequential treatment iron oxides-carbon. The assays were carried out using activated carbon with two particles size of (2-4 and 0,6 mm) and two contact times (6 and 12 h) to treat samples spiked with three working concentrations (10, 25 and 50 μg As/L). The analysis of the remaining arsenic in water were carried out using the international standard methodology, atomic absorption using the technique of hydrides generation. The highest arsenic removal efficiencies were achieved with the sequential treatment iron oxides-activated carbon: 54, 50 and 58 %, respectively, for the three assayed concentrations. The analysis of variance did not find significant differences between contact time (6 and 12 h), but between particles size of activated carbon. Due to these findings it is recommended to use the shortest contact time (6 h) and the smallest particles size of activated carbon (0.6 mm) for arsenic removal.

Downloads

Download data is not yet available.
Abstract
735
PDF (Español (España)) 735
PDF 176
HTML (Español (España)) 322
HTML 156

References

Altamirano E, M. (2005). DISTRIBUCIÓN DE LA CONTAMINACIÓN NATURAL POR ARSÉNICO EN LAS AGUAS SUBTERRÁNEAS DE LA SUBCUENCA SUROESTE DEL VALLE DE SEBACO, MATAGALPA-NICARAGUA. Managua: CIRA/UNAN-Managua.

AMEC. (04 de Mayo de 2015). Componentes del filtro para la remoción de Arsénico. AMEC, Managua, Nicaragua.

Amirtharajah, A., & O’Melia, C. (1990). Coagulation processes: Destabilization, mixing and flocculation (4th ed.). (F. W. Pontius, Ed.) Nueva York, N.Y., EE.UU: McGraw-Hill.

DeMarco, M. J., SenGruta, A. K., John, E., & Greenleaf, J. E. (2003). Arsenic removal using a polymeric/inorganic hibrid sorbent. Water Research 37,. 164-176.

Esparza, M. C. (2006). Presencia de arsénico en el agua de bebida en América Latina y su efecto en la salud pública. International Congress: Natural Arsenic in Groundwaters of Latin America. Mexico.

Ferreccio, C., González, C., Milosavjlevic, V., Marshall, G., Sacha, A. M., & Smith, A. H. (2000). Lung cancer and arsenic concentrations in drinking water in Chile. Epidemiology. 11(6). 676-679.

Gregg, S. J., & Sing , S. W. (1982). Adsorption, Surface Area and Porosity. London Academic Press.

Han, B., Runnells, T., & Wickramasinghe, R. (2002). Arsenic renoval from drinking water by flocculation and microfiltration, Desalination 145. 293-298.

Hughes , M. (2002). Arsenic toxicity and potencial mechanisms of action. Toxicology letters. 133,, 1 - 16.

Kapaj, S., Peterson, H., Liber, K., & Bhattacharya, P. (2006). Human Healh Effects from arsenic poisoning-a review. Journal of Environmental Science and Health. Part A 41,. 2399-2428.

Mohan, D., & Pittman, ,. C. (2007). Arsenic removal from water/wastewater using adsorbents-a critical review. Journal of Hazardous Materials 142. 1-53.

Montero Campos, V., Quesada Kimsey, J., Ledezma Espinoza, A., & Sandoval Mora, J. A. (2010). Determinación de arsénico en abastecimientos de agua para consumo humano de la provincia de Cartago, Costa Rica.

Ngai, T. K., Dangol, B., Murcott, S. E., & Shrestha, R. R. (2005). Kanchan Arsenic Filter.Massachusetts Institute of Technology (MIT) and Environment and Public Health Organization (ENPHO). Kathmandu, Nepal. Kathmandu, Nepal.

OMS. (1995). Organizácion Mundial de la Salud.

SMWW. (2005). Standard Methods for the Examination of Water and Wastewater. American Public Healh Association (APHA), 21 .

UNICEF. (2002). MONITOREO Y ATENCIÓN DE INTOXICADOS CON ARSÉNICOEN EL ZAPOTE, MUNICIPIO DE SAN ISIDRO, DEPARTAMENTO DE MATAGALPA, NICARAGUA 1994-2002. Managua: DRA. ALINA GÓMEZ C. Obtenido de https://studylib.es/doc/6457827/monitoreo-y-atenci%C3%B3n-de-intoxicados-con-ars%C3%A9nico-en-el-za.

UNICEF. (2004). Contribución al Estudio de Cinco Zonas Contaminadas Naturalmente por Arsénico en Nicaragua. Managua: UNICEF - Nicaragua.

Universidad Politecnica de Sevilla. (2002). MANUAL DEL CARBON ACTIVO. Recuperado el 2016, de http://www.elaguapotable.com/Manual%20del%20carb%C3%B3n%20activo.pdf

Ures Rodríguez, P., Suárez López, J., & Jácome Burgos, A. (mayo de 2015). ADSORCIÓN EN CARBÓN ACTIVO (FT-TER-002). INDITEX.

USEPA. (2007). Treatment Technologies for Arsenic Removal.

Published

2020-05-07

How to Cite

Rojas Cerda, K. V. (2020). Evaluation of the efficiency of arsenic removal in water with activated carbon from jícaro sabanero (Crescentia alata) and its combination with iron oxides. Torreon Universitario Magazine, 9(24), 58–68. https://doi.org/10.5377/torreon.v9i24.9724

Issue

Section

SCIENTIFIC ARTICLES