Human hair to assess exposure to arsenic in users of contaminated water from La Fuente community in La Paz Centro, León.

Authors

  • Maximina Altamirano National Autonomous University of Nicaragua, Managua. Center for Research in Aquatic Resources of Nicaragua
  • Valeria Delgado National Autonomous University of Nicaragua, Managua. Center for Research in Aquatic Resources of Nicaragua
  • Silvia Fuentes Huelva National Autonomous University of Nicaragua, Managua. Center for Research in Aquatic Resources of Nicaragua

DOI:

https://doi.org/10.5377/torreon.v9i25.9856

Keywords:

hydroarsenicism, biomarker, bioaccumulation, thermalism, Momotombo volcano

Abstract

The presence of Arsenic in the surface and groundwater of Nicaragua is related to the geoenvironments present in the country. The study area is located NE of the Momotombo volcano, located in the volcanic arc in front of the Nicaraguan Depression, where the predominant geological material is rocks and sediments of the alluvial and volcanic Quaternary. The community of La Fuente is made up of 112 families (1300 inhabitants) that are mostly supplied with water by artisanal sources (90 dug wells and three drilled wells, one of them is communal). In a previous study, total arsenic in water was determined in a range of 2.0 to 103.0 µg/L, with the highest value being reported in a thermal spring; where 70% of the sites monitored (24 wells) reports values not suitable for human consumption (greater than or equal to 10 µg/L). The arsenic present in the water is absorbed by the tissues to be subsequently eliminated in the urine; but when the intake is greater than excretion it tends to be accumulated in hair and nails, as in urine and blood; these are excellent biomarkers to determine acute and chronic exposure to this metalloid. Considering the time of ingestion of water contaminated with arsenic by residents of La Fuente, it was decided to determine whether there is arsenic in the residents of La Fuente, using human hair as a biological indicator. A focus group was identified for this study considering the highest concentrations of arsenic present in water, as well as the longest intake time, resulting in a population group of 43 women and 9 men. Approximately 5 grams of hair was collected from each individual to be evaluated, totaling 52 hair samples. Arsenic concentrations detected in hair ranged from 0.014 to 0.925 µg·g-1; being these values less than 1.00 µg·g-1, standard established as a toxicity criterion by the Quebec Toxicological Center (CTQ). The highest concentrations of arsenic are associated with the oldest person (woman 90 years old) probably due to the longer exposure time; and the youngest (child 7 years), probably because this pollutant is transmitted from mother to children through the umbilical cord, the newborn presenting a concentration similar to her mother at birth. The community members were informed of their results as part of the social commitment to the population subject to the study.

Downloads

Download data is not yet available.
Abstract
1723
PDF (Español (España)) 494
PDF 205
HTML (Español (España)) 535
HTML 90

References

Altamirano E, M. (2017). Contaminación natural por arsénico en las aguas subterráneas de la comunidad rural “La Fuente”, para sugerir y promover el uso de fuentes alternativas de agua segura municipio la Paz Centro, León. Managua, Nicaragua.

ATSDR. (2011). The priority list of hazardous Substances, Department of Health and Human Services, Public health Services. Agency for toxic Substance and Disease Registry .

Bertolero, F., Marafante, E., Edel Rade , J., & Pietra , R. (1981). Biotransformation and intracelular binding of arsenic in tissues of rabbits after intraperitioneal administration of 74 As labiled arsenite toxicology. 20,35-44.

Chojnacka , K., Góreaka, H., & Gorecki , H. (2006). The efect of age, sex , smoking habit and hair color on the composition of hair . Environ Toxicol pharmacol , 22.

Chowdhury, U. K., Biswas, B. K., Roychowdhury, T., Samanta, G., Mandal, B. K., Basu, G. K., et al. (2000). Groundwater arsenic contamination in Bangladesh and West Bengal, India. Environ. Health Perspect., 108(5), 393–396.

CTQ. (1980). Méthode mormalisé pour le dosage de l'arsenic dans les cheveux par absorption atomique avec four de grafite M-126-A . Centre de Toxicologie du Quebec.

Genie Zepeda, E., & González Zambrana, R. (2017). Efectos a la salud por exposición crónica a arsénico en agua de bebida en habitantes adultos de comunidades rurales del Municipio Larreynaga-Malpaisillo. Tesis de grado, Managua.

Gil , F., & Hernández, A. F. (2009). Significance of biochemical markers in applied toxicology. (B. Ballantyne , T. C. Marrs , & T. Syversen , Edits.) In general and Applied Toxicology, 2, 847 – 858.

Gómez C., A. (2002). Monitoreo y Atención de intoxicados con Arsénico en El Zapote, Municipio de San Isidro, Departamento de Matagalpa, Nicaragua 1994-2002. Managua: UNICEF.

Gómez Cuevas, A. (2007). Efectos Cutáneos y Respiratorios en personas con intoxicación crónica por arsénico en agua El Zapote, Municipio de San Isidro - Matagalpa, Nicaragua. 2007. Tesis de Maestría, Managua.

Harker, M. R. (1993). Anatomy and Phisiology of hair. Forensic Science. International, 63.

Herrera, D. (En ejecución). Valoración de la exposición a arsénico mediante el uso del biomarcador cabello humano en los usuarios de fuentes de agua contaminada en las comunidades: Tecuaname y el Papalonal del municipio de La Paz Centro. Tesis de Maestría, Managua.

INAA. (2001). Normas Técnicas para el diseño de abastecimiento y potabilización de agua. Normas NTOM 09003-99. Managua.

Licata , P., Trombetta , D., Cristani , M., Naccari , C., Martino , D., & Calo , M. (2005). Heavy metals in liver and muscle of bluefin tuna (Thunnus thynnus) caught in the Straits of Lillo,

OMS. (2011). Guías para la calidad del agua de consumo humano, Cuarta edición que incorpora la primera ADENDA .

OPS/OMS, Nuevas Esperanzas. ( 2011). Estudio de la Contaminación del Agua por Arsénico en 1853 el Municipio de Télica, León. . Télica, León, Nicaragua.

Pereira, R., Ribeiro , R., & Goncalves , F. (2004). Scalp hair analysis as a tool in assessing human exposure to heavymetals (S Domingos mine, Portugal ). SCI total Environ ;.

PON. (2010). Procedimiento Operativo Normalizado (PON) para la determinación de arsénico total en cabello humano como un biomarcador de exposicion por absorcion atomica - generación de hidruro. Managua: CIRA/UNAN-Managua.

Repetto, M. (1995). Toxicologia Avanzada. Madrid: Díaz de Santos, S.A.

Reyes Salgado, M., & Provedor Fonseca, E. (1998). Factores clínicos epidemiológicos asociados a intoxicaciones agudas por Arsénico en comunidades de San Isidro, Matagalpa. 1998. Tesis de Maestría, Managua.

Rodríguez Barranco, M., Lacasaña, M., Aguilar Garduño, C., Alguacil , J., Gil, F., González Alzaga, B., et al. (2013). Association of arsenic, cadmium and manganese exposure with neurodevelopment and behavioural disorders in children: a systematic review and meta-analysis. Science of the total.

Smith, A. H., Hopenhayn - Rich, C., Warner, M., Biggs, M. L., Moore, L., & Smith, M. T. (1993). Rationale for selecting exfoliated bladder cell micronuclei as potential biomarkers for arsenic genotoxicity. J. Toxicol. Environ. Health, 40, 223-234.1993

Stynze Ramírez, J. (En Ejecución). Evaluación de la Contaminación por Arsénico en las Aguas Subterráneas de las Comunidades Tecuaname y El Papalonal, ubicadas en el Municipio de La Paz Centro, Departamento de León, 2016. Tesis de Maestría, Managua.

Wickre, J., Folt, C., Sturup, S., & Karagas, M. (2004). Environmental Exposure and Fingernail Analysis of Arsenic and Mercury in Children and Adults in a Nicaraguan Gold Mining Community. Archives of Environmental Health, 59(8), 400-409.

Published

2020-06-24

How to Cite

Altamirano, M., Delgado, V., & Fuentes Huelva, S. (2020). Human hair to assess exposure to arsenic in users of contaminated water from La Fuente community in La Paz Centro, León. Torreon Universitario Magazine, 9(25), 94–109. https://doi.org/10.5377/torreon.v9i25.9856

Issue

Section

SCIENTIFIC ARTICLES