Uso sostenible de la cascarilla de arroz para productos de valor añadido
DOI:
https://doi.org/10.5377/elhigo.v12i1.14516Palabras clave:
Cáscara de arroz, Valorización, Pirólisis, Catálisis, Biochar, BioaceiteResumen
En este artículo se hace una revisión exhaustiva de la conversión termoquímica de la cáscara de arroz (CA) en productos de valor añadido. La cáscara de arroz es un residuo orgánico que se produce en volúmenes considerables en Nicaragua, representando una fuente viable de productos de valor añadido a partir de procesos termoquímicos. Las propiedades de la CA y las condiciones de funcionamiento afectan la calidad y el rendimiento de los productos de bioaceite, biochar y en la elaboración de concreto. Se revisaron sistemáticamente las técnicas de conversión, como la gasificación, la pirólisis lenta y rápida, y la distribución de los productos. La bibliografía muestra que los catalizadores basados en níquel (Ni) demostraron una alta actividad en el craqueo de compuestos de alquitrán e hidrocarburos, mejoraron la calidad del gas y obtuvieron una alta producción de hidrógeno. Las cenizas de CA también se utilizan como material cementante alternativo en el sector de la construcción. El nivel óptimo de sustitución del cemento por cenizas de CA en el concreto es del 15-20%, y se observa una mayor resistencia a la compresión en el concreto con cenizas de CA que en el concreto de cemento convencional.
Descargas
805
Citas
A.D. and E.O.A. Madeleine, M. Bergqvist, K. Samuel Wardh (2008). A techno-economic assessment of rice husk-based power generation in the Mekong River Delta of Vietnam Madeleine. Int. J. ENERGY Res, 32(12) https://doi.org/1136-1150, 10.1002/er
Abu Bakar M.S., Titiloye J.O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Anal. Appl. Pyrolysis, (103), pp. 362-368, https://doi.org/10.1016/j.jaap.2012.09.005
Ang T.N., Ngoh G.C., Chua A.S.M., Lee M.G. (2012). Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses Biotechnol. Biofuels, (5), 1-10, https://doi.org/10.1186/1754-6834-5-67
Armesto L., Bahillo A., Veijonen K., Cabanillas A., Otero J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenergy, (23), 171-179, https://doi.org/10.1016/S0961-9534(02)00046-
Bauen, A. (2004). Biomass Gasification. Encycl. Energy, Elsevier, 213-221, https://doi.org/10.1016/B0-12-176480-X/00356-9.
Chen Z.M. , Zhang L. (2015). Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO. Fuel Process. Technol., (133), 227-231, https://doi.org/10.1016/j.fuproc.2015.01.027
Chungsangunsit T., Gheewala S.H., Patumsawad S. (2009). Emiss. Assess. Rice Husk Combust. Power Prod., 3, 625-630
Dong Fan X., Jian Wu Y., Tu R., Sun Y., Chen Jiang E., Wei Xu X. (2020). Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports. Renew. Energy, (157), 1035-1045, https://doi.org/10.1016/j.renene.2020.05.045
Efomah A.N., Gbabo A. (2015). The physical, proximate and ultimate analysis of rice husk briquettes produced from a vibratory block mould briquetting machine. Int. J. Innov. Sci. Eng. Technol. (2), 814-822.
Feng Y., Meng J., Xiang Q.,Ming Zhang W., Yi Cheng X., Fu W. (2017). Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. J. Integr. Agric., (16), pp. 1064-1074, https://doi.org/10.1016/S2095-3119(16)61578-2
Fernandes I.J. , Calheiro D., Kieling A.G. , Moraes C.A.M., Rocha T.L.A.C., Brehm F.A. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel, (165), 351-359, https://doi.org/10.1016/j.fuel.2015.10.086
Freire A.L., Moura-Nickel, Scaratti G., De Rossi A., Araújo M.H., De Noni Júnior A. (2020). Geopolymers produced with fly ash and rice husk ash applied to CO2 capture. J. Clean. Prod. (273), 10.1016/j.jclepro.2020.122917
Gabra M., Pettersson E., Backman R., Kjellström B. (2001). Evaluation of cyclone gasifier performance for gasification of sugar cane residue - Part 1: Gasification of bagasse Biomass. Bioenergy, (21), 351-369, https://doi.org/10.1016/S0961-9534(01)00043-5
Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier (2017). Renew. Energy, (42), 163-167. https://doi.org/10.1016/j.renene.2011.08.028
Gasification of Waste Derived Fuels in Fluidized Beds (2017): Fundamental Aspects and Industrial Challenges, Springer, Cham, 19-63, https://doi.org/10.1007/978-3-319-46870-9_2.
Gautam N., Chaurasia A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process, Energy, (190), 116434, https://doi.org/10.1016/j.energy.2019.116434
Ghani A.T.W.A.W.K., Moghadam R.A., Salleh M.A.M. (2012). Gasification performance of rice husk in fluidized bed reactor: a hydrogen-rich production. J. Energy Environ. (4), 7-11.
Ghorbani M., Asadi H., Abrishamkesh S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res., (7), 258-265, https://doi.org/10.1016/j.iswcr.2019.05.005
Guo X., Wang S., Wang Q., Guo Z. (2011). Luo. Properties of bio-oil from fast pyrolysis of rice husk Chin. J. Chem. Eng., (19), 116-121, https://doi.org/10.1016/S1004-9541(09)60186-5
H.S. Heo, H.J. Park, J.I. Dong, S.H. Park, S. Kim, D.J. Suh, (2010). Fast pyrolysis of rice husk under different reaction conditions. J. Ind. Eng. Chem., (16), 27-31, https://doi.org/10.1016/j.jiec.2010.01.026
Jia H., Du T., Fang X., Gong H., Qiu Z., Li Y., et al. Synthesis of Template-Free ZSM-5 from Rice Husk Ash at Low Temperatures and Its CO2Adsorption Performance (2021). ACS Omega, (6), https://doi.org/3961-3972, 10.1021/acsomega.0c05842
Jiang H., Zhu X., Guo Q., Zhu Q. (2003). Gasification of rice husk in a fluidized-bed gasifier without inert additives. Ind. Eng. Chem. Res., (42), 5745-5750, https://doi.org/10.1021/ie0304659.
Kamran U., Park S.J. (2020). MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere, (260), 127500, https://doi.org/10.1016/j.chemosphere.2020.127500
Karmakar M.K., Mandal J., Haldar S., Chatterjee P.K. (2013). Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk. Fuel, (111), 584-591, https://doi.org/10.1016/j.fuel.2013.03.045
Khalil U., Bilal Shakoor M., Ali S., Rizwan S., Nasser Alyemeni S., Wijaya L. (2020). Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. J. Saudi Chem. Soc., 24 , pp. 799-810, https://doi.org/10.1016/j.jscs.2020.07.001
Khonde R., Chaurasia A. (2016). Rice husk gasification in a two-stage fixed-bed gasifier: production of hydrogen rich syngas and kinetics. Int. J. Hydrog. Energy, (41), 8793-8802, https://doi.org/10.1016/j.ijhydene.2016.03.138
Li J., Liu J., Liao S., Yan R. (2010). Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst. Int. J. Hydrog. Energy, (35), 7399-7404, https://doi.org/10.1016/j.ijhydene.2010.04.108
Li M., Xiao R. (2019). Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 Capture. Fuel Process. Technol., (186), 35-39, https://doi.org/10.1016/j.fuproc.2018.12.015
Liu L., Huang Y., Cao J., Hu H., Dong L., Zha J. (2021). Qualitative and relative distribution of Pb2+ adsorption mechanisms by biochars produced from a fluidized bed pyrolysis system under mild air oxidization conditions. J. Mol. Liq., (323), https://doi.org/10.1016/j.molliq.2020.114600
Loha C., Chattopadhyay H., Chatterjee P.K. (2011). Thermodynamic analysis of hydrogen rich synthetic gas generation from fl uidized bed gasification of rice husk. Energy, (36), 4063-4071. https://doi.org/10.1016/j.energy.2011.04.042
Lozano F.J., Lozano R. (2015). Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. Fuel, 158, 42-(49), https://doi.org/10.1016/j.fuel.2015.05.019
M. Ahmaruzzaman, D.K. Sharma (2005). Adsorption of phenols from wastewater J. Colloid Interface Sci., (287), 14-24, https://doi.org/10.1016/j.jcis.2005.01.075
Madhiyanon T., Sathitruangsak P., Soponronnarit S. (2010). Combustion characteristics of rice-husk in a short-combustion-chamber fluidized-bed combustor (SFBC). Appl. Therm. Eng., (30), 347-353, https://doi.org/10.1016/j.applthermaleng.2009.09.014
Mahapatro, A. Mahanta, P. (2020). Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed. Renew. Energy, (150), 1151-1159, https://doi.org/10.1016/j.renene.2019.10.038
Makwana J.P., Joshi A.K., Athawale G., Singh D., Mohanty P. (2015). Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal. Bioresour. Technol., (178), 45-52, https://doi.org/10.1016/j.biortech.2014.09.111
Makwana J.P., Pandey J., Mishra G. (2019). Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renew. Energy, (130), 943-951, https://doi.org/10.1016/j.renene.2018.07.011
Materazzi M. (2017). Gasification of Waste Derived Fuels in Fluidized Beds: Fundamental Aspects and Industrial Challenges, Springer Cham (250) , 19-63, https://doi.org/10.1007/978-3-319-46870-9_2.
Materazzi M., Foscolo P.U. (2019). The role of waste and renewable gas to decarbonize the energy sector Substit. Nat. Gas from Waste Tech. Assess. Ind. Appl. Biochem. Thermochem. Process (280), (1-19), https://doi.org/10.1016/B978-0-12-815554-7.00001-5
Mathieu P., Dubuisson R. (2002). Performance analysis of a biomass gasifier. Energy Convers. Manag, 1291-1299.
Rajasekhar Reddy B., Vinu R.. (2018). Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: Product characterization and evidence of interactions. Fuel Processing Technology, (178), 41-52. https://doi.org/10.1016/j.fuproc.2018.04.018.
Reddy B.R., Vinu R. (2018). Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Process. Technol. (178), 41-52. https://doi.org/10.1016/j.fuproc.2018.04.018
Reichenauer T.G., Panamulla S., Subasinghe S., Wimmer B. (2009). Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka. Environ. Geochem. Health, (31), 573-579, https://doi.org/10.1007/s10653-009-9253-6.
Rozainee M., Ngo S.P., Salema A.A., Tan K.G., Ariffin M., Zainura Z.N. (2008). Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash. Bioresour. Technol., (99), 703-713, https://doi.org/10.1016/j.biortech.2007.01.049
S. Zhang, T. Chen, Y. Xiong (2018). Effect of washing pretreatment with aqueous fraction of bio-oil on pyrolysis characteristic of rice husk and preparation of amorphous silica. Waste Biomass Valoriz., (9), 861-869, https://doi.org/10.1007/s12649-017-9845-9
Saravanan P., Josephraj J., Thillainayagam B.P., Ravindiran G. (2021). Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. Biomass Convers. Biorefinery, https://doi.org/10.1007/s13399-021-01415-y
Shen J., Zhu S., Liu X., Zhang H., Tan J. (2012). Measurement of heating value of rice husk by using oxygen bomb calorimeter with benzoic acid as combustion adjuvant. Energy Procedia, (17), pp. 208-213, https://doi.org/10.1016/j.egypro.2012.02.085
Shen Y., Fu Y. (2018). KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption, Mater. Today Energy, (9), 397-405, https://doi.org/10.1016/j.mtener.2018.07.005
Shen Y., Zhang N. (2019). Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption. Bioresour. Technol., (282), 294-300, https://doi.org/10.1016/j.biortech.2019.03.025.
Shen Y., Zhao P., Shao Q., Ma D., Takahashi F., Yoshikawa K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B Environ., 140-151, https://doi.org/10.1016/j.apcatb.2014.01.032
Shen Y., Zhao P., Shao Q., Ma D., Takahashi F., Yoshikawa K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B Environ., 140-151, https://doi.org/10.1016/j.apcatb.2014.01.032
Suryaprakash Shailendrakumar Shukla, Ramakrishna Chava, Srinivas Appari, Bahurudeen A, Bhanu Vardhan Reddy Kuncharam, Sustainable use of rice husk for the cleaner production of value-added products, Environmental Chemical Engineering, (10), 241-252 https://doi.org/10.1016/j.jece.2021.106899.
T. Islam, C. Peng, I. Ali, J. Li, Z.M. Khan, M. Sultan (2021). Synthesis of Rice Husk-Derived Magnetic Biochar through Liquefaction to Adsorb Anionic and Cationic Dyes from Aqueous Solutions, Arab. J. Sci. Eng., (46), 233-246, https://doi.org/10.1007/s13369-020-04537-z
Trabold T.A. , Babbitt C.W. (2018). Sustainable food waste-to-energy systems. Elsevier, https://doi.org/10.1016/C2016-0-00715-5
Tsai W.T., Lee M.K., Chang Y.M. (2007). Fast pyrolysis of rice husk: product yields and compositions. Bioresour. Technol., (98), pp. 22-28, https://doi.org/10.1016/j.biortech.2005.12.005
W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol., (102), 8247-8252, https://doi.org/10.1016/j.biortech.2011.06.014
Williams P.T, Nugranad N. (2000). Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, (25), 493-513, https://doi.org/10.1016/S0360-5442(00)00009-8
Xia Z., Song X., Wang W. (2020). Reduction mechanism study on sorption enhanced chemical looping gasification of biomass waste rice husk for H2 production over multi-functional NixCa1−xO particles. Fuel Process. Technol., 209, Article 106524, https://doi.org/10.1016/j.fuproc.2020.106524
Y. Fu, Y. Shen, Z. Zhang, X. Ge, M. Chen (2019). Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ., (646), 1567-1577, https://doi.org/10.1016/j.scitotenv.2018.07.423
Y. Shen, K. Yoshikawa (2014). Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind. Eng. Chem. Res., 53, pp. 10929-10942, https://doi.org/10.1021/ie501843y
Yang H., Chen H. (2015). Biomass gasification for synthetic liquid fuel production. Gasif. Synth. Fuel Prod. Fundam. Process. Appl., Elsevier Ltd, 241-275, https://doi.org/10.1016/B978-0-85709-802-3.00011-4
Yin X.L., Wu C.Z., Zheng S.P., Chen Y. (2002). Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy, (23), 181-187, https://doi.org/10.1016/S0961-9534(02)00042-9
Yin X.L., Wu C.Z., Zheng S.P., Chen Y. (2002). Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy, (23), 181-187, https://doi.org/10.1016/S0961-9534(02)00042-9
Zhai M., Xu Y., Guo L., Zhang Y., Dong P., Huang Y. (2016). Characteristics of pore structure of rice husk char during high-temperature steam gasification. Fuel, (185), 622-629, https://doi.org/10.1016/j.fuel.2016.08.028.
Zhai M., Zhang Y., Dong P., Liu P. (2015). Characteristics of rice husk char gasification with steam. Fuel, 158, pp. 42-49, https://doi.org/10.1016/j.fuel.2015.05.019
Zhang G., Liu H., Wang J, Wu. B. (2018). Catalytic gasification characteristics of rice husk with calcined dolomite. Energy, (165), pp. 1173-1177, https://doi.org/10.1016/j.energy.2018.10.030
Zhang Y., Zhao Y., Gao X., Li B., Huang J. (2015). Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. J. Clean. Prod., (95), 273-280, https://doi.org/10.1016/j.jclepro.2015.02.053
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Universidad Nacional de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todo el material publicado en la revista se comparte bajo la Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0., se permite la copia y redistribución del material en cualquier medio o formato siempre y cuando se de crédito de forma explícita a la revista, el autor y la obra, se distribuya de forma gratuita y sin hacer modificaciones al contenido.