Uso sostenible de la cascarilla de arroz para productos de valor añadido

Autores/as

  • Dannette Bernice Robinson Ubau Programa de Investigación, Estudios Nacionales y Servicios del Ambiente, PIENSA. Universidad Nacional de Ingeniería, UNI, Nicaragua.
  • Derling Uriel Torres Martínez Programa de Investigación, Estudios Nacionales y Servicios del Ambiente, PIENSA. Universidad Nacional de Ingeniería, UNI, Nicaragua.
  • Henry Javier Vílchez Pérez Empresa Extraceite S.A., Nicaragua.

DOI:

https://doi.org/10.5377/elhigo.v12i1.14516

Palabras clave:

Cáscara de arroz, Valorización, Pirólisis, Catálisis, Biochar, Bioaceite

Resumen

En este artículo se hace una revisión exhaustiva de la conversión termoquímica de la cáscara de arroz (CA) en productos de valor añadido. La cáscara de arroz es un residuo orgánico que se produce en volúmenes considerables en Nicaragua, representando una fuente viable de productos de valor añadido a partir de procesos termoquímicos. Las propiedades de la CA y las condiciones de funcionamiento afectan la calidad y el rendimiento de los productos de bioaceite, biochar y en la elaboración de concreto. Se revisaron sistemáticamente las técnicas de conversión, como la gasificación, la pirólisis lenta y rápida, y la distribución de los productos. La bibliografía muestra que los catalizadores basados en níquel (Ni) demostraron una alta actividad en el craqueo de compuestos de alquitrán e hidrocarburos, mejoraron la calidad del gas y obtuvieron una alta producción de hidrógeno. Las cenizas de CA también se utilizan como material cementante alternativo en el sector de la construcción. El nivel óptimo de sustitución del cemento por cenizas de CA en el concreto es del 15-20%, y se observa una mayor resistencia a la compresión en el concreto con cenizas de CA que en el concreto de cemento convencional.

Descargas

Los datos de descargas todavía no están disponibles.
Resumen
819
PDF 633

Biografía del autor/a

Dannette Bernice Robinson Ubau , Programa de Investigación, Estudios Nacionales y Servicios del Ambiente, PIENSA. Universidad Nacional de Ingeniería, UNI, Nicaragua.

Graduada en Ingeniería Ambiental por la Universidad Centroamericana (UCA) y egresado como maestro en Ingeniería Ambiental, por la Universidad Nacional de Ingeniería (UNI), consultora en Gestión ambiental e hidrogeología, con domicilio en Km 10.5 carretera Masaya, correo electrónico ing.drobinson@gmail.com

Derling Uriel Torres Martínez, Programa de Investigación, Estudios Nacionales y Servicios del Ambiente, PIENSA. Universidad Nacional de Ingeniería, UNI, Nicaragua.

Graduado en Ingeniería Civil y egresado como maestro en Ingeniería Ambiental, por la Universidad Nacional  de Ingeniería (UNI), Consultor en Ingeniería Sanitaria y Ambiental, con domicilio en Cedro Galán distrito III Managua, correo electrónico d.urielt@yahoo.es

Henry Javier Vílchez Pérez, Empresa Extraceite S.A., Nicaragua.

Henry Javier Vílchez Pérez, graduado  en  ingeniería civil y maestro en Ingeniería Ambiental, por la  Universidad  Nacional  de Ingeniería (UNI), estudios doctorales en el Instituto de Ingeniería de la Universidad Nacional Autónoma de México; con una amplia experiencia en trabajos de investigación   de aguas residuales Urbanas e industriales, así como, gestión de residuos sólidos urbanos y FORSU; docente de posgrado en maestría de ciencias del agua Centro para la Investigación en Recursos Acuáticos de Nicaragua CIRA/UNAN-Managua y Programa de Investigación, Estudios Nacionales y Servicios del Ambiente de la Universidad Nacional de Ingeniería en la maestría de Ingeniería Ambiental.

Citas

A.D. and E.O.A. Madeleine, M. Bergqvist, K. Samuel Wardh (2008). A techno-economic assessment of rice husk-based power generation in the Mekong River Delta of Vietnam Madeleine. Int. J. ENERGY Res, 32(12) https://doi.org/1136-1150, 10.1002/er

Abu Bakar M.S., Titiloye J.O. (2013). Catalytic pyrolysis of rice husk for bio-oil production. Anal. Appl. Pyrolysis, (103), pp. 362-368, https://doi.org/10.1016/j.jaap.2012.09.005

Ang T.N., Ngoh G.C., Chua A.S.M., Lee M.G. (2012). Elucidation of the effect of ionic liquid pretreatment on rice husk via structural analyses Biotechnol. Biofuels, (5), 1-10, https://doi.org/10.1186/1754-6834-5-67

Armesto L., Bahillo A., Veijonen K., Cabanillas A., Otero J. (2002). Combustion behaviour of rice husk in a bubbling fluidised bed. Biomass Bioenergy, (23), 171-179, https://doi.org/10.1016/S0961-9534(02)00046-

Bauen, A. (2004). Biomass Gasification. Encycl. Energy, Elsevier, 213-221, https://doi.org/10.1016/B0-12-176480-X/00356-9.

Chen Z.M. , Zhang L. (2015). Catalyst and process parameters for the gasification of rice husk with pure CO2 to produce CO. Fuel Process. Technol., (133), 227-231, https://doi.org/10.1016/j.fuproc.2015.01.027

Chungsangunsit T., Gheewala S.H., Patumsawad S. (2009). Emiss. Assess. Rice Husk Combust. Power Prod., 3, 625-630

Dong Fan X., Jian Wu Y., Tu R., Sun Y., Chen Jiang E., Wei Xu X. (2020). Hydrodeoxygenation of guaiacol via rice husk char supported Ni based catalysts: The influence of char supports. Renew. Energy, (157), 1035-1045, https://doi.org/10.1016/j.renene.2020.05.045

Efomah A.N., Gbabo A. (2015). The physical, proximate and ultimate analysis of rice husk briquettes produced from a vibratory block mould briquetting machine. Int. J. Innov. Sci. Eng. Technol. (2), 814-822.

Feng Y., Meng J., Xiang Q.,Ming Zhang W., Yi Cheng X., Fu W. (2017). Effects of straw and biochar addition on soil nitrogen, carbon, and super rice yield in cold waterlogged paddy soils of North China. J. Integr. Agric., (16), pp. 1064-1074, https://doi.org/10.1016/S2095-3119(16)61578-2

Fernandes I.J. , Calheiro D., Kieling A.G. , Moraes C.A.M., Rocha T.L.A.C., Brehm F.A. (2016). Characterization of rice husk ash produced using different biomass combustion techniques for energy. Fuel, (165), 351-359, https://doi.org/10.1016/j.fuel.2015.10.086

Freire A.L., Moura-Nickel, Scaratti G., De Rossi A., Araújo M.H., De Noni Júnior A. (2020). Geopolymers produced with fly ash and rice husk ash applied to CO2 capture. J. Clean. Prod. (273), 10.1016/j.jclepro.2020.122917

Gabra M., Pettersson E., Backman R., Kjellström B. (2001). Evaluation of cyclone gasifier performance for gasification of sugar cane residue - Part 1: Gasification of bagasse Biomass. Bioenergy, (21), 351-369, https://doi.org/10.1016/S0961-9534(01)00043-5

Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier (2017). Renew. Energy, (42), 163-167. https://doi.org/10.1016/j.renene.2011.08.028

Gasification of Waste Derived Fuels in Fluidized Beds (2017): Fundamental Aspects and Industrial Challenges, Springer, Cham, 19-63, https://doi.org/10.1007/978-3-319-46870-9_2.

Gautam N., Chaurasia A. (2020). Study on kinetics and bio-oil production from rice husk, rice straw, bamboo, sugarcane bagasse and neem bark in a fixed-bed pyrolysis process, Energy, (190), 116434, https://doi.org/10.1016/j.energy.2019.116434

Ghani A.T.W.A.W.K., Moghadam R.A., Salleh M.A.M. (2012). Gasification performance of rice husk in fluidized bed reactor: a hydrogen-rich production. J. Energy Environ. (4), 7-11.

Ghorbani M., Asadi H., Abrishamkesh S. (2019). Effects of rice husk biochar on selected soil properties and nitrate leaching in loamy sand and clay soil. Int. Soil Water Conserv. Res., (7), 258-265, https://doi.org/10.1016/j.iswcr.2019.05.005

Guo X., Wang S., Wang Q., Guo Z. (2011). Luo. Properties of bio-oil from fast pyrolysis of rice husk Chin. J. Chem. Eng., (19), 116-121, https://doi.org/10.1016/S1004-9541(09)60186-5

H.S. Heo, H.J. Park, J.I. Dong, S.H. Park, S. Kim, D.J. Suh, (2010). Fast pyrolysis of rice husk under different reaction conditions. J. Ind. Eng. Chem., (16), 27-31, https://doi.org/10.1016/j.jiec.2010.01.026

Jia H., Du T., Fang X., Gong H., Qiu Z., Li Y., et al. Synthesis of Template-Free ZSM-5 from Rice Husk Ash at Low Temperatures and Its CO2Adsorption Performance (2021). ACS Omega, (6), https://doi.org/3961-3972, 10.1021/acsomega.0c05842

Jiang H., Zhu X., Guo Q., Zhu Q. (2003). Gasification of rice husk in a fluidized-bed gasifier without inert additives. Ind. Eng. Chem. Res., (42), 5745-5750, https://doi.org/10.1021/ie0304659.

Kamran U., Park S.J. (2020). MnO2-decorated biochar composites of coconut shell and rice husk: An efficient lithium ions adsorption-desorption performance in aqueous media. Chemosphere, (260), 127500, https://doi.org/10.1016/j.chemosphere.2020.127500

Karmakar M.K., Mandal J., Haldar S., Chatterjee P.K. (2013). Investigation of fuel gas generation in a pilot scale fluidized bed autothermal gasifier using rice husk. Fuel, (111), 584-591, https://doi.org/10.1016/j.fuel.2013.03.045

Khalil U., Bilal Shakoor M., Ali S., Rizwan S., Nasser Alyemeni S., Wijaya L. (2020). Adsorption-reduction performance of tea waste and rice husk biochars for Cr(VI) elimination from wastewater. J. Saudi Chem. Soc., 24 , pp. 799-810, https://doi.org/10.1016/j.jscs.2020.07.001

Khonde R., Chaurasia A. (2016). Rice husk gasification in a two-stage fixed-bed gasifier: production of hydrogen rich syngas and kinetics. Int. J. Hydrog. Energy, (41), 8793-8802, https://doi.org/10.1016/j.ijhydene.2016.03.138

Li J., Liu J., Liao S., Yan R. (2010). Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst. Int. J. Hydrog. Energy, (35), 7399-7404, https://doi.org/10.1016/j.ijhydene.2010.04.108

Li M., Xiao R. (2019). Preparation of a dual pore structure activated carbon from rice husk char as an adsorbent for CO2 Capture. Fuel Process. Technol., (186), 35-39, https://doi.org/10.1016/j.fuproc.2018.12.015

Liu L., Huang Y., Cao J., Hu H., Dong L., Zha J. (2021). Qualitative and relative distribution of Pb2+ adsorption mechanisms by biochars produced from a fluidized bed pyrolysis system under mild air oxidization conditions. J. Mol. Liq., (323), https://doi.org/10.1016/j.molliq.2020.114600

Loha C., Chattopadhyay H., Chatterjee P.K. (2011). Thermodynamic analysis of hydrogen rich synthetic gas generation from fl uidized bed gasification of rice husk. Energy, (36), 4063-4071. https://doi.org/10.1016/j.energy.2011.04.042

Lozano F.J., Lozano R. (2015). Assessing the potential sustainability benefits of agricultural residues: Biomass conversion to syngas for energy generation or to chemicals production. Fuel, 158, 42-(49), https://doi.org/10.1016/j.fuel.2015.05.019

M. Ahmaruzzaman, D.K. Sharma (2005). Adsorption of phenols from wastewater J. Colloid Interface Sci., (287), 14-24, https://doi.org/10.1016/j.jcis.2005.01.075

Madhiyanon T., Sathitruangsak P., Soponronnarit S. (2010). Combustion characteristics of rice-husk in a short-combustion-chamber fluidized-bed combustor (SFBC). Appl. Therm. Eng., (30), 347-353, https://doi.org/10.1016/j.applthermaleng.2009.09.014

Mahapatro, A. Mahanta, P. (2020). Gasification studies of low-grade Indian coal and biomass in a lab-scale pressurized circulating fluidized bed. Renew. Energy, (150), 1151-1159, https://doi.org/10.1016/j.renene.2019.10.038

Makwana J.P., Joshi A.K., Athawale G., Singh D., Mohanty P. (2015). Air gasification of rice husk in bubbling fluidized bed reactor with bed heating by conventional charcoal. Bioresour. Technol., (178), 45-52, https://doi.org/10.1016/j.biortech.2014.09.111

Makwana J.P., Pandey J., Mishra G. (2019). Improving the properties of producer gas using high temperature gasification of rice husk in a pilot scale fluidized bed gasifier (FBG). Renew. Energy, (130), 943-951, https://doi.org/10.1016/j.renene.2018.07.011

Materazzi M. (2017). Gasification of Waste Derived Fuels in Fluidized Beds: Fundamental Aspects and Industrial Challenges, Springer Cham (250) , 19-63, https://doi.org/10.1007/978-3-319-46870-9_2.

Materazzi M., Foscolo P.U. (2019). The role of waste and renewable gas to decarbonize the energy sector Substit. Nat. Gas from Waste Tech. Assess. Ind. Appl. Biochem. Thermochem. Process (280), (1-19), https://doi.org/10.1016/B978-0-12-815554-7.00001-5

Mathieu P., Dubuisson R. (2002). Performance analysis of a biomass gasifier. Energy Convers. Manag, 1291-1299.

Rajasekhar Reddy B., Vinu R.. (2018). Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: Product characterization and evidence of interactions. Fuel Processing Technology, (178), 41-52. https://doi.org/10.1016/j.fuproc.2018.04.018.

Reddy B.R., Vinu R. (2018). Microwave-assisted co-pyrolysis of high ash Indian coal and rice husk: product characterization and evidence of interactions. Fuel Process. Technol. (178), 41-52. https://doi.org/10.1016/j.fuproc.2018.04.018

Reichenauer T.G., Panamulla S., Subasinghe S., Wimmer B. (2009). Soil amendments and cultivar selection can improve rice yield in salt-influenced (tsunami-affected) paddy fields in Sri Lanka. Environ. Geochem. Health, (31), 573-579, https://doi.org/10.1007/s10653-009-9253-6.

Rozainee M., Ngo S.P., Salema A.A., Tan K.G., Ariffin M., Zainura Z.N. (2008). Effect of fluidising velocity on the combustion of rice husk in a bench-scale fluidised bed combustor for the production of amorphous rice husk ash. Bioresour. Technol., (99), 703-713, https://doi.org/10.1016/j.biortech.2007.01.049

S. Zhang, T. Chen, Y. Xiong (2018). Effect of washing pretreatment with aqueous fraction of bio-oil on pyrolysis characteristic of rice husk and preparation of amorphous silica. Waste Biomass Valoriz., (9), 861-869, https://doi.org/10.1007/s12649-017-9845-9

Saravanan P., Josephraj J., Thillainayagam B.P., Ravindiran G. (2021). Evaluation of the adsorptive removal of cationic dyes by greening biochar derived from agricultural bio-waste of rice husk. Biomass Convers. Biorefinery, https://doi.org/10.1007/s13399-021-01415-y

Shen J., Zhu S., Liu X., Zhang H., Tan J. (2012). Measurement of heating value of rice husk by using oxygen bomb calorimeter with benzoic acid as combustion adjuvant. Energy Procedia, (17), pp. 208-213, https://doi.org/10.1016/j.egypro.2012.02.085

Shen Y., Fu Y. (2018). KOH-activated rice husk char via CO2 pyrolysis for phenol adsorption, Mater. Today Energy, (9), 397-405, https://doi.org/10.1016/j.mtener.2018.07.005

Shen Y., Zhang N. (2019). Facile synthesis of porous carbons from silica-rich rice husk char for volatile organic compounds (VOCs) sorption. Bioresour. Technol., (282), 294-300, https://doi.org/10.1016/j.biortech.2019.03.025.

Shen Y., Zhao P., Shao Q., Ma D., Takahashi F., Yoshikawa K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B Environ., 140-151, https://doi.org/10.1016/j.apcatb.2014.01.032

Shen Y., Zhao P., Shao Q., Ma D., Takahashi F., Yoshikawa K. (2014). In-situ catalytic conversion of tar using rice husk char-supported nickel-iron catalysts for biomass pyrolysis/gasification. Appl. Catal. B Environ., 140-151, https://doi.org/10.1016/j.apcatb.2014.01.032

Suryaprakash Shailendrakumar Shukla, Ramakrishna Chava, Srinivas Appari, Bahurudeen A, Bhanu Vardhan Reddy Kuncharam, Sustainable use of rice husk for the cleaner production of value-added products, Environmental Chemical Engineering, (10), 241-252 https://doi.org/10.1016/j.jece.2021.106899.

T. Islam, C. Peng, I. Ali, J. Li, Z.M. Khan, M. Sultan (2021). Synthesis of Rice Husk-Derived Magnetic Biochar through Liquefaction to Adsorb Anionic and Cationic Dyes from Aqueous Solutions, Arab. J. Sci. Eng., (46), 233-246, https://doi.org/10.1007/s13369-020-04537-z

Trabold T.A. , Babbitt C.W. (2018). Sustainable food waste-to-energy systems. Elsevier, https://doi.org/10.1016/C2016-0-00715-5

Tsai W.T., Lee M.K., Chang Y.M. (2007). Fast pyrolysis of rice husk: product yields and compositions. Bioresour. Technol., (98), pp. 22-28, https://doi.org/10.1016/j.biortech.2005.12.005

W.J. Liu, F.X. Zeng, H. Jiang, X.S. Zhang (2011). Preparation of high adsorption capacity bio-chars from waste biomass. Bioresour. Technol., (102), 8247-8252, https://doi.org/10.1016/j.biortech.2011.06.014

Williams P.T, Nugranad N. (2000). Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks, Energy, (25), 493-513, https://doi.org/10.1016/S0360-5442(00)00009-8

Xia Z., Song X., Wang W. (2020). Reduction mechanism study on sorption enhanced chemical looping gasification of biomass waste rice husk for H2 production over multi-functional NixCa1−xO particles. Fuel Process. Technol., 209, Article 106524, https://doi.org/10.1016/j.fuproc.2020.106524

Y. Fu, Y. Shen, Z. Zhang, X. Ge, M. Chen (2019). Activated bio-chars derived from rice husk via one- and two-step KOH-catalyzed pyrolysis for phenol adsorption. Sci. Total Environ., (646), 1567-1577, https://doi.org/10.1016/j.scitotenv.2018.07.423

Y. Shen, K. Yoshikawa (2014). Tar conversion and vapor upgrading via in situ catalysis using silica-based nickel nanoparticles embedded in rice husk char for biomass pyrolysis/gasification. Ind. Eng. Chem. Res., 53, pp. 10929-10942, https://doi.org/10.1021/ie501843y

Yang H., Chen H. (2015). Biomass gasification for synthetic liquid fuel production. Gasif. Synth. Fuel Prod. Fundam. Process. Appl., Elsevier Ltd, 241-275, https://doi.org/10.1016/B978-0-85709-802-3.00011-4

Yin X.L., Wu C.Z., Zheng S.P., Chen Y. (2002). Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy, (23), 181-187, https://doi.org/10.1016/S0961-9534(02)00042-9

Yin X.L., Wu C.Z., Zheng S.P., Chen Y. (2002). Design and operation of a CFB gasification and power generation system for rice husk. Biomass Bioenergy, (23), 181-187, https://doi.org/10.1016/S0961-9534(02)00042-9

Zhai M., Xu Y., Guo L., Zhang Y., Dong P., Huang Y. (2016). Characteristics of pore structure of rice husk char during high-temperature steam gasification. Fuel, (185), 622-629, https://doi.org/10.1016/j.fuel.2016.08.028.

Zhai M., Zhang Y., Dong P., Liu P. (2015). Characteristics of rice husk char gasification with steam. Fuel, 158, pp. 42-49, https://doi.org/10.1016/j.fuel.2015.05.019

Zhang G., Liu H., Wang J, Wu. B. (2018). Catalytic gasification characteristics of rice husk with calcined dolomite. Energy, (165), pp. 1173-1177, https://doi.org/10.1016/j.energy.2018.10.030

Zhang Y., Zhao Y., Gao X., Li B., Huang J. (2015). Energy and exergy analyses of syngas produced from rice husk gasification in an entrained flow reactor. J. Clean. Prod., (95), 273-280, https://doi.org/10.1016/j.jclepro.2015.02.053

Descargas

Publicado

2022-06-30

Cómo citar

Robinson Ubau , D. B. ., Torres Martínez, D. U. ., & Vílchez Pérez, H. J. . (2022). Uso sostenible de la cascarilla de arroz para productos de valor añadido. Revista Ciencia Y Tecnología El Higo, 12(1), 2–27. https://doi.org/10.5377/elhigo.v12i1.14516

Número

Sección

Artículos científicos de revisión