Eficiencia del método LDG para aproximar la solución de los problemas de Bratu y de Troesch

Authors

  • Paul E. Castillo Departamento de Ciencias Matemáticas, Universidad de Puerto Rico, Mayagüez
  • Sergio A. Gómez Departamento de Ciencias Matemáticas, Universidad de Puerto Rico, Mayagüez

DOI:

https://doi.org/10.5377/ref.v5i2.8266

Keywords:

Bratu and Troesch problems, Diffusion and non linear reaction equation, Local Discontinuous Galerkin method (LDG), High order finite element approximations

Abstract

A numerical study of the finite element method “Local Discontinuous Galerkin” (LDG) applied to the non-linear Bratu’s and Troesch’s problem in the steady state regime is presented. Unlike other numerical schemes, it is shown, numerically, the ability of the LDG method a) to approximate both bifurcation solutions in Bratu’s problem; and b) to obtain solutions for large values of Troesch’s parameter. The advantage of using high-order polynomials to obtain
accurate approximations is also addressed.

Downloads

Download data is not yet available.
Abstract
436
PDF (Español (España)) 1150

Published

2017-12-22

How to Cite

Castillo, P. E., & Gómez, S. A. (2017). Eficiencia del método LDG para aproximar la solución de los problemas de Bratu y de Troesch. Revista De La Escuela De Física, 5(2), 39–46. https://doi.org/10.5377/ref.v5i2.8266

Issue

Section

Investigation