Interacción entre Arquitectura de Interiores y Arquitectura en la Creación de Espacios Habitables Sostenibles
DOI:
https://doi.org/10.5377/arquitectura.v9i18.18763Palabras clave:
Arquitectura-de-interiores, espacios-habitables, investigación-interdisciplinaria, sostenibilidad, tecnologías-innovadorasResumen
La arquitectura de interiores y la creación de espacios habitables sostenibles son fundamentales en el diseño arquitectónico contemporáneo. Este estudio aborda cómo la interacción entre la arquitectura de interiores y la arquitectura influye en la sostenibilidad de los espacios interiores. El propósito general de este estudio es explorar la relación dinámica entre la arquitectura de interiores y la arquitectura en el contexto de la sostenibilidad. El objetivo específico es identificar y analizar las prácticas y tecnologías innovadoras que promueven la sostenibilidad en la arquitectura de interiores. Se realizó una revisión sistemática de la literatura, seleccionando artículos científicos publicados en los últimos cinco años. Se utilizó la base de datos Scopus para identificar estudios relevantes, aplicando criterios de inclusión y exclusión rigurosos para garantizar la coherencia temática y la relevancia de los resultados. La revisión destacó una variedad de enfoques innovadores y tecnologías emergentes, como el uso de materiales ecoamigables y la incorporación de tecnologías inteligentes, que contribuyen a la creación de espacios habitables sostenibles y estéticamente atractivos. El estudio revela un creciente interés y conciencia sobre la sostenibilidad en la arquitectura de interiores, destacando la necesidad de enfoques interdisciplinarios y holísticos en la investigación y práctica del diseño arquitectónico sostenible. Se identifican áreas para futuras investigaciones, incluyendo la adopción de prácticas más sostenibles y la integración de las preferencias de los usuarios en el diseño de espacios habitables.
Descargas
16
Citas
Abdulahaad, E. S., Ra’ouf, Z. H., & Hasan, V. A. A. B. M. (2023). Reconsidering the Transparency of Contemporary Architecture and Sustainability Through Development of Glass Technology. International Journal of Design and Nature and Ecodynamics, 18(5), 1111–1119. https://doi.org/10.18280/IJDNE.180512
Abyzov, V., Bulakh, I., Ustinova, I., Safronova, O., Safronov, V., & Semyroz, N. (2023). Sustainable Design in Architecture (The Case Study of the Educational Process at Universities in Poland and Ukraine). Civil Engineering and Architecture, 11(3), 1255 – 1266. https://doi.org/10.13189/cea.2023.110311
Alhmoud, S. H., Çağnan, Ç., & Arcan, E. F. (2020). Improving interior environmental quality using sustainable design in jordanian hospital bedrooms. European Journal of Sustainable Development, 9(3), 443 – 456. https://doi.org/10.14207/ejsd.2020.v9n3p443
Al-Saigh, M. N., & Mahmoud, K. F. (2023). The Impact of Smart Interactive Technologies in Creating Personal Internal Spaces: An Analytical Study of User Preferences for Interactive Shape Characteristics. International Journal of Sustainable Development and Planning, 18(8), 2339–2348. https://doi.org/10.18280/ijsdp.180804
Avudaiappan, S., Cuello Moreno, P. I., Montoya R, L. F., Chávez-Delgado, M., Arunachalam, K. P., Guindos, P., Marzialetti B, T., Fernando Parra, P., Saavedra Flores, E. I., & Flores Arrey, J. I. (2023). Experimental investigation on the physical, microstructural, and mechanical properties of hemp limecrete. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-48144-y
Cazacova, L., & Semlali, A. (2023). From Theory to Practice – Interior Design Education for More Sustainable Future. WSEAS Transactions on Environment and Development, 19, 1276–1283. https://doi.org/10.37394/232015.2023.19.115
Celadyn, M. (2019). Interior architectural design for adaptive reuse in application of environmental sustainability principles. Sustainability (Switzerland), 11(14). https://doi.org/10.3390/su11143820
Chen, J., Shao, Z., Zhu, H., Chen, Y., Li, Y., Zeng, Z., Yang, Y., Wu, J., & Hu, B. (2023). Sustainable interior design: A new approach to intelligent design and automated manufacturing based on Grasshopper. Computers and Industrial Engineering, 183. https://doi.org/10.1016/j.cie.2023.109509
Darbandi, M., Imani, N., & Rahimzadeh, M. (2023). The Emergence of Interior Architecture. 6(2), 249–266. https://doi.org/10.7454/in/v6i2.308
Darwish, E. A., & Midani, M. (2023). The potential of date palm midribs-based fabric acoustic panels for sustainable interior design. Ain Shams Engineering Journal, 14(6). https://doi.org/10.1016/j.asej.2022.102100
Di Gaetano, F., Cascone, S., & Caponetto, R. (2023). Integrating BIM Processes with LEED Certification: A Comprehensive Framework for Sustainable Building Design. Buildings, 13(10). https://doi.org/10.3390/buildings13102642
Di Santo, N., Guante Henriquez, L., Dotelli, G., & Imperadori, M. (2023). Holistic Approach for Assessing Buildings’ Environmental Impact and User Comfort from Early Design: A Method Combining Life Cycle Assessment, BIM, and Active House Protocol. Buildings, 13(5). https://doi.org/10.3390/buildings13051315
Filippini, M., & Obrist, A. (2022). Are households living in green certified buildings consuming less energy? Evidence from Switzerland. Energy Policy, 161. https://doi.org/10.1016/j.enpol.2021.112724
Gronostajska, B. E., & Szczegielniak, A. (2021). Inside a microapartment: Design solutions to support future sustainable lifestyles. Buildings, 11(12). https://doi.org/10.3390/buildings11120654
Hsu, Y. T., Wang, W. H., & Hung, W. H. (2020). Architectural sustainability and efficiency of enhanced waterproof coating from utilization of waterborne poly (Siloxane-Imide-Urethane) copolymers on roof surfaces. Sustainability (Switzerland), 12(11). https://doi.org/10.3390/su12114411
Isimbi, D., & Park, J. (2022). The Analysis of the EDGE Certification System on Residential Complexes to Improve Sustainability and Affordability. Buildings, 12(10). https://doi.org/10.3390/buildings12101729
Jalali, S., Nicoletti, E., & Badarnah, L. (2024). From Flora to Solar Adaptive Facades: Integrating Plant-Inspired Design with Photovoltaic Technologies. Sustainability (Switzerland), 16(3). https://doi.org/10.3390/su16031145
Kim, J., & Heo, W. (2021). Interior design with consumers’ perception about art, brand image, and sustainability. Sustainability (Switzerland), 13(8). https://doi.org/10.3390/su13084557
Kineber, A. F., Massoud, M. M., Hamed, M. M., & Qaralleh, T. J. O. (2023). Exploring Sustainable Interior Design Implementation Barriers: A Partial Least Structural Equation Modeling Approach. Sustainability (Switzerland), 15(5). https://doi.org/10.3390/su15054663
Laila Amer Al-Qahtani, & Ahmed Al-Jumaily. (2023). Sustainability and textile ideas implementation. International Journal of Low-Carbon Technologies, Volume 18, 111–122. https://doi.org/https://doi.org/10.1093/ijlct/ctac064
Mohsen, M. S., & Matarneh, R. (2023). Exploring the Interior Designers’ Attitudes toward Sustainable Interior Design Practices: The Case of Jordan. Sustainability (Switzerland), 15(19). https://doi.org/10.3390/su151914491
Mucsi, Z. M., Hasan, K. M. F., Horváth, P. G., Bak, M., Kóczán, Z., & Alpár, T. (2022). Semi-dry technology mediated lignocellulosic coconut and energy reed straw reinforced cementitious insulation panels. Journal of Building Engineering, 57. https://doi.org/10.1016/j.jobe.2022.104825
No, S., & Won, C. (2020). Comparative analysis of energy consumption between green building certified and non-certified buildings in Korea. Energies, 13(5). https://doi.org/10.3390/en13051049
Ragab, A., Zouli, N., Abutaleb, A., Maafa, I. M., Ahmed, M. M., & Yousef, A. (2023). Environmental and Economic Benefits of Using Pomegranate Peel Waste for Insulation Bricks. Materials, 16(15). https://doi.org/10.3390/ma16155372
Rubino, C., Liuzzi, S., Stefanizzi, P., & Martellotta, F. (2023). Characterization of sustainable building materials obtained from textile waste: From laboratory prototypes to real-world manufacturing processes. Journal of Cleaner Production, 390. https://doi.org/10.1016/j.jclepro.2023.136098
Șerbănoiu, A. A., Grădinaru, C. M., Cimpoeșu, N., Filipeanu, D., Șerbănoiu, B. V., & Cherecheș, N. C. (2021). Study of an ecological cement-based composite with a sustainable raw material, sunflower stalk ash. Materials, 14(23). https://doi.org/10.3390/ma14237177
Serra, J., Gouaich, Y., & Manav, B. (2022). Preference for accent and background colors in interior architecture in terms of similarity/contrast of natural color system attributes. Color Research and Application, 47(1), 135–151. https://doi.org/10.1002/col.22698
Siqueira, F. F. D. S., Cosse, R. L., de Noronha Castro Pinto, F. A., Mareze, P. H., Silva, C. F. E., & Nunes, L. C. C. (2021). Characterization of buriti (Mauritia flexuosa) foam for thermal insulation and sound absorption applications in buildings. Buildings, 11(7). https://doi.org/10.3390/buildings11070292
Sulistyawati, D., Santosa, I., Wahjudi, D., & Junaidy, D. W. (2024). Millennial experience through the utilization of feature technology in coffee shop interior design. Environment and Social Psychology, 9(5). https://doi.org/10.54517/esp.v9i5.2249
Yau, Y., Hou, H., Yip, K. C., & Qian, Q. K. (2021). Transaction cost and agency perspectives on eco-certification of existing buildings: A study of hong kong. Energies, 14(19). https://doi.org/10.3390/en14196375
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2024 Universidad Nacional de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.