Beneficios de los alimentos transgénicos biofortificados, una revisión del 2012 al 2022
DOI:
https://doi.org/10.5377/elhigo.v12i2.15229Palabras clave:
biotecnología, cultivos, genesResumen
Los alimentos transgénicos biofortificados contribuyen como una herramienta futura, prometedora, innovadora, rentable y sostenible para suplir la necesidad de micronutrientes a una población sin dietas diversas brindando alternativas de micronutrientes. Los principales cultivos alimentarios se caracterizan por fuentes pobres de micronutrientes esenciales para el crecimiento humano. El objetivo es informar acerca de los principales alimentos transgénicos bioforticados con potencial para la reducción del hambre oculta. Se utilizaron ecuaciones de búsqueda en inglés y análisis bibliométrico de los términos alimentos transgénicos y biofortificación, encontrándose un total de mil registros principalmente se encontraron las categorías de cereales, vegetales, verduras, frutas y tubérculos. La fuente de consulta corresponde a las bases de datos de la BAC (Biblioteca Agropecuaria de Colombia). El manuscrito trata aspectos de la contribución de los cultivos transgénicos en la biofortificación. Se destacan casos de éxito como los del maíz enriquecido en proteínas de calidad en lisina y triptófano, el de batata naranja rica en vitamina A. Se amplia en los diferentes alimentos transgénicos, especialmente hortalizas, frutas, tubérculos y cereales, que suplen las necesidades nutricionales de la población. Los alimentos transgénicos tienen que enfrentar obstáculos debido a las limitaciones de aceptación entre los consumidores e incluso los gobiernos, con distintos procedimientos y normatividad de aprobación regulatoria que son costosos y lentos. Pero se destaca el potencial que tienen a futuro debido a su capacidad de eliminar la desnutrición de micronutrientes entre miles de millones de personas pobres, especialmente en los países en desarrollo que presentan tendencia al hambre oculta.
Descargas
6064
Citas
Adeyeye, S. A. O., & Idowu-Adebayo, F. (2019). Genetically modified and biofortified crops and food security in developing countries: A review. Nutrition & Food Science, 49(5), 978–986. https://doi.org/10.1108/NFS-12-2018-0335
Ardisana, E., Gaánza, B., Torres, A., & Fosado, O. (2018). Agricultura en Sudamerica: La Huella Ecologica y el futuro de la produccion agrícola. Revista Chakiápman de Ciencias Sociales y Humanidades, 90–101. http://scielo.senescyt.gob.ec/scielo.php?script=sci_arttext&pid=S2550-67222018000100090&nrm=iso
Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. Journal of Informetrics, 11(4), 959–975. https://doi.org/https://doi.org/10.1016/j.joi.2017.08.007
Avalos, M., Garbeva, P., Vader, L., van Wezel, G. P., Dickschat, J. S., & Ulanova, D. (2022). Biosynthesis, evolution and ecology of microbial terpenoids. Natural Product Reports, 39(2), 249–272. https://doi.org/10.1039/d1np00047k
Blancquaert, D., Van Daele, J., Strobbe, S., Kiekens, F., Storozhenko, S., De Steur, H., Gellynck, X., Lambert, W., Stove, C., & Van Der Straeten, D. (2015). Improving folate (vitamin B9) stability in biofortified rice through metabolic engineering. Nature Biotechnology, 33(10), 1076–1078. https://doi.org/10.1038/nbt.3358
Blesh, J., Hoey, L., Jones, A. D., Friedmann, H., & Perfecto, I. (2019). Development pathways toward “zero hunger.” World Development, 118, 1–14. https://doi.org/https://doi.org/10.1016/j.worlddev.2019.02.004
Bojórquez, R. M. C., Gallego, J. G., & Collado, P. S. (2013). Propiedades funcionales y beneficios para la salud del licopeno. Nutricion Hospitalaria, 28(1), 6–15. https://doi.org/10.3305/nh.2013.28.1.6302
Broad, R. C., Bonneau, J. P., Hellens, R. P., & Johnson, A. A. T. (2020). Manipulation of Ascorbate Biosynthetic, Recycling, and Regulatory Pathways for Improved Abiotic Stress Tolerance in Plants. International Journal of Molecular Sciences, 21(5). https://doi.org/10.3390/ijms21051790
Calero, P., & Nikel, P. I. (2019). Chasing bacterial chassis for metabolic engineering: a perspective review from classical to non-traditional microorganisms. Microbial Biotechnology, 12(1), 98–124. https://doi.org/10.1111/1751-7915.13292
Cominelli, E., Rodiño, A. P., De Ron, A. M., & Sparvoli, F. (2019). Genetic Approaches to Improve Common Bean Nutritional Quality: Current Knowledge and Future Perspectives. In A. M. I. Qureshi, Z. A. Dar, & S. H. Wani (Eds.), Quality Breeding in Field Crops (pp. 109–138). Springer International Publishing. https://doi.org/10.1007/978-3-030-04609-5_5
Das, P., Adak, S., & Lahiri Majumder, A. (2020). Genetic Manipulation for Improved Nutritional Quality in Rice. Frontiers in Genetics, 11. https://doi.org/10.3389/fgene.2020.00776
Debelo, H., Albertsen, M., Simon, M., Che, P., & Ferruzzi, M. (2020). Identification and Characterization of Carotenoids, Vitamin E and Minerals of Biofortified Sorghum. In Current Developments in Nutrition (Vol. 4, Issue Suppl 2, p. 1792). https://doi.org/10.1093/cdn/nzaa067_019
Elkonin, L. A., Italianskaya, J. V, Domanina, I. V, Selivanov, N. Y., Rakitin, A. L., & Ravin, N. V. (2016). Transgenic sorghum with improved digestibility of storage proteins obtained by Agrobacterium-mediated transformation. Russian Journal of Plant Physiology, 63(5), 678–689. https://doi.org/10.1134/S1021443716050046
Endo, A., Saika, H., Takemura, M., Misawa, N., & Toki, S. (2019). A novel approach to carotenoid accumulation in rice callus by mimicking the cauliflower Orange mutation via genome editing. Rice, 12(1), 81. https://doi.org/10.1186/s12284-019-0345-3
Erpen, L., Devi, H. S., Grosser, J. W., & Dutt, M. (2018). Potential use of the DREB/ERF, MYB, NAC and WRKY transcription factors to improve abiotic and biotic stress in transgenic plants. Plant Cell, Tissue and Organ Culture (PCTOC), 132(1), 1–25. https://doi.org/10.1007/s11240-017-1320-6
Force, U. S. P. S. T. (2017). Folic Acid Supplementation for the Prevention of Neural Tube Defects: US Preventive Services Task Force Recommendation Statement. JAMA, 317(2), 183–189. https://doi.org/10.1001/jama.2016.19438
Foreman, K. J., Marquez, N., Dolgert, A., Fukutaki, K., Fullman, N., McGaughey, M., Pletcher, M. A., Smith, A. E., Tang, K., Yuan, C.-W., Brown, J. C., Friedman, J., He, J., Heuton, K. R., Holmberg, M., Patel, D. J., Reidy, P., Carter, A., Cercy, K., … Murray, C. J. L. (2018). Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016–40 for 195 countries and territories. The Lancet, 392(10159), 2052–2090. https://doi.org/https://doi.org/10.1016
/S0140-6736(18)31694-5
Gao, H., Wu, X., Zorrilla, C., Vega, S. E., & Palta, J. P. (2020). Fractionating of Calcium in Tuber and Leaf Tissues Explains the Calcium Deficiency Symptoms in Potato Plant Overexpressing CAX1. Frontiers in Plant Science, 10. https://doi.org/10.3389/fpls.2019.01793
Garcia Molina, M. D., Botticella, E., Beleggia, R., Palombieri, S., De Vita, P., Masci, S., Lafiandra, D., & Sestili, F. (2021). Enrichment of provitamin A content in durum wheat grain by suppressing β-carotene hydroxylase 1 genes with a TILLING approach. Theoretical and Applied Genetics, 134(12), 4013–4024. https://doi.org/10.1007/s00122-021-03944-6
Garg, M., Sharma, N., Sharma, S., Kapoor, P., Kumar, A., Chunduri, V., & Arora, P. (2018). Biofortified Crops Generated by Breeding, Agronomy, and Transgenic Approaches Are Improving Lives of Millions of People around the World. Frontiers in Nutrition, 5(February). https://doi.org/10.3389/fnut.2018.00012
Geetha, S., Joshi, J. B., Kumar, K. K., Arul, L., Kokiladevi, E., Balasubramanian, P., & Sudhakar, D. (2019). Genetic transformation of tropical maize (Zea mays L.) inbred line with a phytase gene from Aspergillus niger. 3 Biotech, 9(6), 208. https://doi.org/10.1007/s13205-019-1731-7
Gillespie, S., Hodge, J., Yosef, S., & Pandya-Lorch, R. (2016). Nourishing millions: Stories of change in nutrition (S. Gillespie, J. Hodge, S. Yosef, & R. Pandya-Lorch (eds.)). International Food Policy Research Institute (IFPRI). https://econpapers.repec.org/RePEc:fpr:ifprib:9780896295889
Gillespie, S., van den Bold Gillespie, M. S., & van den Bold, M. (2017). Agriculture, Food Systems, and Nutrition: Meeting the Challenge. https://doi.org/10.1002/gch2.201600002
Halka, M., Smoleń, S., Czernicka, M., Klimek-Chodacka, M., Pitala, J., & Tutaj, K. (2019). Iodine biofortification through expression of HMT, SAMT and S3H genes in Solanum lycopersicum L. Plant Physiology and Biochemistry, 144, 35–48. https://doi.org/https://doi.org/10.1016/j.plaphy.2019.09.028
Hefferon, K. L. (2015). Nutritionally enhanced food crops; progress and perspectives. International Journal of Molecular Sciences, 16(2), 3895–3914. https://doi.org/10.3390/ijms16023895
Hefferon, K. L. (2016). Can Biofortified Crops Help Attain Food Security? Current Molecular Biology Reports, 2(4), 180–185. https://doi.org/10.1007/S40610-016-0048-0
Holme, I. B., Wendt, T., Gil-Humanes, J., Deleuran, L. C., Starker, C. G., Voytas, D. F., & Brinch-Pedersen, H. (2017). Evaluation of the mature grain phytase candidate HvPAPhy_a gene in barley (Hordeum vulgare L.) using CRISPR/Cas9 and TALENs. Plant Molecular Biology, 95(1), 111–121. https://doi.org/10.1007/s11103-017-0640-6
Hossain, F., Muthusamy, V., Zunjare, R. U., & Gupta, H. S. (2019). Biofortification of Maize for Protein Quality and Provitamin-A Content. In P. K. Jaiwal, A. K. Chhillar, D. Chaudhary, & R. Jaiwal (Eds.), Nutritional Quality Improvement in Plants (pp. 115–136). Springer International Publishing. https://doi.org/10.1007/978-3-319-95354-0_5
Huang, J.-C., Zhong, Y.-J., Liu, J., Sandmann, G., & Chen, F. (2013). Metabolic engineering of tomato for high-yield production of astaxanthin. Metabolic Engineering, 17, 59–67. https://doi.org/https://doi.org/10.1016/j.ymben.2013.02.005
Hudson, J. P. H. A.-J. P. H. A.-M. C.-C. A.-K. A. (2019). Combination of Novel Mutation in FAD3C and FAD3A for Low Linolenic Acid Soybean. Agrosystems, Geosciences & Environment, v. 2(1), 2019 v.2 no.1. https://doi.org/10.2134/age2019.01.0006
James, C. (2013). Global Status of Commercialized Biotech/GM Crops: 2013: ISAAA Brief No. 46. International Service for the Acquisition of Agri-biotech Applications (ISAAA). https://www.isaaa.org/Resources/publications/briefs/46/default.asp
Jaramillo, A. M., Sierra, S., Chavarriaga-Aguirre, P., Castillo, D. K., Gkanogiannis, A., López-Lavalle, L. A. B., Arciniegas, J. P., Sun, T., Li, L., Welsch, R., Boy, E., & Álvarez, D. (2022). Characterization of cassava ORANGE proteins and their capability to increase provitamin A carotenoids accumulation. PLOS ONE, 17(1), 1–24. https://doi.org/10.1371/journal.pone.0262412
Joshi-Saha, A., Sethy, S. K., Misra, G., Dixit, G. P., Srivastava, A. K., & Sarker, A. (2022). Biofortified legumes: Present scenario, possibilities and challenges. Field Crops Research, 279, 108467. https://doi.org/https://doi.org/10.1016/j.fcr.2022.108467
Kanwal, M., Razzaq, A., & Maqbool, A. (2019). Characterization of Phytase Transgenic Wheat under Salt Stress. Biology Bulletin, 46(4), 371–380. https://doi.org/10.1134/S106235901904006X
Khush, G. S., Lee, S., Cho, J.-I., & Jeon, J.-S. (2012). Biofortification of crops for reducing malnutrition. Plant Biotechnology Reports, 6(3), 195–202. https://doi.org/10.1007/s11816-012-0216-5
Kim, H. S., Wang, W., Kang, L., Kim, S.-E., Lee, C.-J., Park, S.-C., Park, W. S., Ahn, M.-J., & Kwak, S.-S. (2020). Metabolic engineering of low-molecular-weight antioxidants in sweetpotato. Plant Biotechnology Reports, 14(2), 193–205. https://doi.org/10.1007/s11816-020-00621-w
Konda, A. R., Nazarenus, T. J., Nguyen, H., Yang, J., Gelli, M., Swenson, S., Shipp, J. M., Schmidt, M. A., Cahoon, R. E., Ciftci, O. N., Zhang, C., Clemente, T. E., & Cahoon, E. B. (2020). Metabolic engineering of soybean seeds for enhanced vitamin E tocochromanol content and effects on oil antioxidant properties in polyunsaturated fatty acid-rich germplasm. Metabolic Engineering, 57, 63–73. https://doi.org/https://doi.org/10.1016/j.ymben.2019.10.005
Li, C., & Song, R. (2020). The regulation of zein biosynthesis in maize endosperm. Theoretical and Applied Genetics, 133(5), 1443–1453. https://doi.org/10.1007/s00122-019-03520-z
Li, X., Ye, J., Munir, S., Yang, T., Chen, W., Liu, G., Zheng, W., & Zhang, Y. (2019). Biosynthetic Gene Pyramiding Leads to Ascorbate Accumulation with Enhanced Oxidative Stress Tolerance in Tomato. International Journal of Molecular Sciences, 20(7). https://doi.org/10.3390/ijms20071558
Liu, H., Wang, F., Liu, X., Xie, Y., Xia, H., Wang, S., & Sun, G. (2022). Effects of marine-derived and plant-derived omega-3 polyunsaturated fatty acids on erythrocyte fatty acid composition in type 2 diabetic patients. Lipids in Health and Disease, 21(1), 20. https://doi.org/10.1186/s12944-022-01630-0
Lombardo, L., & Grando, M. S. (2020). Genetically Modified Plants for Nutritionally Improved Food: A Promise Kept? Food Reviews International, 36(1), 58–76. https://doi.org/10.1080/87559129.2019.1613664
Mathur, V., Javid, L., Kulshrestha, S., Mandal, A., & Reddy, A. A. (2017). World Cultivation of Genetically Modified Crops: Opportunities and Risks. In E. Lichtfouse (Ed.), Sustainable Agriculture Reviews (pp. 45–87). Springer International Publishing. https://doi.org/10.1007/978-3-319-58679-3_2
McGuire, S. (2015). FAO, IFAD, and WFP. The State of Food Insecurity in the World 2015: Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress. Rome: FAO, 2015. Advances in Nutrition, 6(5), 623–624. https://doi.org/10.3945/an.115.009936
Mihálik, D., Gubišová, M., Klempová, T., Čertík, M., Ondreičková, K., Hudcovicová, M., Klčová, L., Gubiš, J., Dokupilová, I., Ohnoutková, L., & Kraic, J. (2014). Transgenic barley producing essential polyunsaturated fatty acids. Biologia Plantarum, 58(2), 348–354. https://doi.org/10.1007/s10535-014-0406-9
Mir, Z. A., Yadav, P., Ali, S., Sanand, S., Mushtaq, M., Bhat, J. A., Tyagi, A., Upadhyay, D., Singh, A., & Grover, A. (2020). Transgenic Biofortified Crops: Applicability and Challenges. In T. R. Sharma, R. Deshmukh, & H. Sonah (Eds.), Advances in Agri-Food Biotechnology (pp. 153–172). Springer Singapore. https://doi.org/10.1007/978-981-15-2874-3_7
Mrízová, K., Holasková, E., Öz, M. T., Jiskrová, E., Frébort, I., & Galuszka, P. (2014). Transgenic barley: A prospective tool for biotechnology and agriculture. Biotechnology Advances, 32(1), 137–157. https://doi.org/https://doi.org/10.1016/j.biotechadv.2013.09.011
National Academies of Sciences Engineering and Medicine, N. (2016). Genetically Engineered Crops: Experiences and Prospects. https://doi.org/10.17226/23395
Oliva, N., Chadha-Mohanty, P., Poletti, S., Abrigo, E., Atienza, G., Torrizo, L., Garcia, R., Dueñas, C., Poncio, M. A., Balindong, J., Manzanilla, M., Montecillo, F., Zaidem, M., Barry, G., Hervé, P., Shou, H., & Slamet-Loedin, I. H. (2014). Large-scale production and evaluation of marker-free indica rice IR64 expressing phytoferritin genes. Molecular Breeding, 33(1), 23–37. https://doi.org/10.1007/s11032-013-9931-z
Park, S., Kim, Y.-H., Kim, S. H., Jeong, Y. J., Kim, C. Y., Lee, J. S., Bae, J.-Y., Ahn, M.-J., Jeong, J. C., Lee, H.-S., & Kwak, S.-S. (2015). Overexpression of the IbMYB1 gene in an orange-fleshed sweet potato cultivar produces a dual-pigmented transgenic sweet potato with improved antioxidant activity. Physiologia Plantarum, 153(4), 525–537. https://doi.org/10.1111/ppl.12281
Parra-Galindo, M. A., Soto-Sedano, J. C., Mosquera-Vásquez, T., & Roda, F. (2021). Pathway-based analysis of anthocyanin diversity in diploid potato. PLOS ONE, 16(4), 1–22. https://doi.org/10.1371/journal.pone.0250861
Pérez-Massot, E., Banakar, R., Gómez-Galera, S., Zorrilla-López, U., Sanahuja, G., Arjó, G., Miralpeix, B., Vamvaka, E., Farré, G., Rivera, S. M., Dashevskaya, S., Berman, J., Sabalza, M., Yuan, D., Bai, C., Bassie, L., Twyman, R. M., Capell, T., Christou, P., & Zhu, C. (2013). The contribution of transgenic plants to better health through improved nutrition: opportunities and constraints. Genes & Nutrition, 8(1), 29–41. https://doi.org/10.1007/s12263-012-0315-5
Pierce, E. C., LaFayette, P. R., Ortega, M. A., Joyce, B. L., Kopsell, D. A., & Parrott, W. A. (2015). Ketocarotenoid production in soybean seeds through metabolic engineering. PLoS ONE, 10(9). https://doi.org/10.1371/journal.pone.0138196
Pramitha, J. L., Rana, S., Aggarwal, P. R., Ravikesavan, R., Joel, A. J., & Muthamilarasan, M. (2021). Chapter Three - Diverse role of phytic acid in plants and approaches to develop low-phytate grains to enhance bioavailability of micronutrients (D. Kumar (ed.); Vol. 107, pp. 89–120). Academic Press. https://doi.org/https://doi.org/10.1016/bs.adgen.2020.11.003
R Core Team. (2020). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. https://www.r-project.org/
Rahman, M. C., Rahaman, M. S., Islam, M. A., Omar, M. I., & Siddique, M. A. B. (2021). Deployment Strategies for Golden Rice in Bangladesh: A Study on Affordability and Varietal Choice with the Target Beneficiaries. Bangladesh Rice Research Institute. https://doi.org/10.13140/RG.2.2.14318.33607
Ricroch, A. (2019). Global developments of genome editing in agriculture. Transgenic Research, 28(2), 45–52. https://doi.org/10.1007/s11248-019-00133-6
Rukavtsova, E. B., Alekseeva, V. V, Tarlachkov, S. V, Zakharchenko, N. S., Ermoshin, A. A., Zimnitskaya, S. A., Surin, A. K., Gorbunova, E. Y., Azev, V. N., Sheshnitsan, S. S., Shestibratov, K. A., & Buryanov, Y. I. (2022). Expression of a Stilbene Synthase Gene from the Vitis labrusca x Vitis vinifera L. Hybrid Increases the Resistance of Transgenic Nicotiana tabacum L. Plants to Erwinia carotovora. Plants, 11(6). https://doi.org/10.3390/plants11060770
Saltzman, A., Birol, E., Bouis, H. E., Boy, E., De Moura, F. F., Islam, Y., & Pfeiffer, W. H. (2013). Biofortification: Progress toward a more nourishing future. Global Food Security, 2(1), 9–17. https://doi.org/https://doi.org/10.1016/j.gfs.2012.12.003
Sathish, S., Preethy, K. S., Venkatesh, R., & Sathishkumar, R. (2018). Rapid enhancement of α-tocopherol content in Nicotiana benthamiana by transient expression of Arabidopsis thaliana Tocopherol cyclase and Homogentisate phytyl transferase genes. 3 Biotech, 8(12), 485. https://doi.org/10.1007/s13205-018-1496-4
Scarano, A., Gerardi, C., Sommella, E., Campiglia, P., Chieppa, M., Butelli, E., & Santino, A. (2022). Engineering the polyphenolic biosynthetic pathway stimulates metabolic and molecular changes during fruit ripening in “bronze” tomato. Horticulture Research. https://doi.org/10.1093/hr/uhac097
Schmidt, M. A., Parrott, W. A., Hildebrand, D. F., Berg, R. H., Cooksey, A., Pendarvis, K., He, Y., McCarthy, F., & Herman, E. M. (2015). Transgenic soya bean seeds accumulating β-carotene exhibit the collateral enhancements of oleate and protein content traits. Plant Biotechnology Journal, 13(4), 590—600. https://doi.org/10.1111/pbi.12286
Singh, H., & Bharti, J. (2021). Incredibly Common Nutrient Deficiencies. EAS Journal of Nutrition and Food Sciences, 3(6), 175–178. https://doi.org/10.36349/easjnfs.2021.v03i06.006
Singh, M. N., Srivastava, R., & Yadav, I. (2021). Study of different varietis of carrot and its benefits for human health: a review. J Pharmacogn Phytochem, 10, 1293–1299. https://doi.org/https://doi.org/10.22271/phyto.2021.v10.i1r.13529
Sissons, M., Sestili, F., Botticella, E., Masci, S., & Lafiandra, D. (2020). Can Manipulation of Durum Wheat Amylose Content Reduce the Glycaemic Index of Spaghetti? Foods, 9(6). https://doi.org/10.3390/foods9060693
Sun, T., Zhu, Q., Wei, Z., Owens, L. A., Fish, T., Kim, H., Thannhauser, T. W., Cahoon, E. B., & Li, L. (2021). Multi-strategy engineering greatly enhances provitamin A carotenoid accumulation and stability in Arabidopsis seeds. ABIOTECH, 2(3), 191–214. https://doi.org/10.1007/s42994-021-00046-1
Swapnil, P., Meena, M., Singh, S. K., Dhuldhaj, U. P., Harish, & Marwal, A. (2021). Vital roles of carotenoids in plants and humans to deteriorate stress with its structure, biosynthesis, metabolic engineering and functional aspects. Current Plant Biology, 26, 100203. https://doi.org/https://doi.org/10.1016/j.cpb.2021.100203
Taqi, M., Rusydiana, A. S., Kustiningsih, N., & Firmansyah, I. (2021). Environmental accounting: A scientometric using biblioshiny. International Journal of Energy Economics and Policy, 11(3), 369–380. https://doi.org/10.32479/ijeep.10986
Tiong, J., McDonald, G. K., Genc, Y., Pedas, P., Hayes, J. E., Toubia, J., Langridge, P., & Huang, C. Y. (2014). HvZIP7 mediates zinc accumulation in barley (Hordeum vulgare) at moderately high zinc supply. The New Phytologist, 201(1), 131–143. https://doi.org/10.1111/nph.12468
Tsypurskaya, E. V, Nikolaeva, T. N., Lapshin, P. V, Nechaeva, T. L., Yuorieva, N. O., Baranova, E. N., Derevyagina, M. K., Nazarenko, L. V, Goldenkova-Pavlova, I. V, & Zagoskina, N. V. (2022). Response of Transgenic Potato Plants Expressing Heterologous Genes of ∆9- or ∆12-Acyl-lipid Desaturases to Phytophthora infestans Infection. Plants, 11(3). https://doi.org/10.3390/plants11030288
Uppal, C., Kaur, A., & Sharma, C. (2021). Genome engineering for nutritional improvement in pulses. In Genome Engineering for Crop Improvement. Wiley Online Library. https://doi.org/10.1002/9781119672425.ch10
Vaupel, J. W., Villavicencio, F., & Bergeron-Boucher, M.-P. (2021). Demographic perspectives on the rise of longevity. Proceedings of the National Academy of Sciences of the United States of America, 118(9). https://doi.org/10.1073/pnas.2019536118
Waltz, E. (2014). Vitamin A Super Banana in human trials. Nature Biotechnology, 32(9), 857. https://doi.org/10.1038/nbt0914-857
Wamiq, M., Alam, K., Ahmad, M., & Luthra, S. (2022). Biofortification in Vegetable Crops. In Modern Concept in Agriculture (Issue September, pp. 141–153). https://doi.org/10.22271/ed.book.1830
Wang, J., Kuang, H., Zhang, Z., Yang, Y., Yan, L., Zhang, M., Song, S., & Guan, Y. (2020). Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. The Crop Journal, 8(3), 432–439. https://doi.org/https://doi.org/10.1016/j.cj.2019.08.008
Wang, X., Yu, C., Liu, Y., Yang, L., Li, Y., Yao, W., Cai, Y., Yan, X., Li, S., Cai, Y., Li, S., & Peng, X. (2019). GmFAD3A, A ω-3 Fatty Acid Desaturase Gene, Enhances Cold Tolerance and Seed Germination Rate under Low Temperature in Rice. International Journal of Molecular Sciences, 20(15). https://doi.org/10.3390/ijms20153796
Wolfgang, P., & McClafferty, B. (2007). HarvestPlus: Breeding Crops for Better Nutrition. Crop Science, v. 47(Supplement_3), S-88-S-105-2007 v.47 no.Supplement_3. https://doi.org/10.2135/cropsci2007.09.0020IPBS
Yuan, Y., Ren, S., Liu, X., Su, L., Wu, Y., Zhang, W., Li, Y., Jiang, Y., Wang, H., Fu, R., Bouzayen, M., Liu, M., & Zhang, Y. (2022). SlWRKY35 positively regulates carotenoid biosynthesis by activating the MEP pathway in tomato fruit. The New Phytologist, 234(1), 164–178. https://doi.org/10.1111/nph.17977
Zeng, Z., Han, N., Liu, C., Buerte, B., Zhou, C., Chen, J., Wang, M., Zhang, Y., Tang, Y., Zhu, M., Wang, J., Yang, Y., & Bian, H. (2020). Functional dissection of HGGT and HPT in barley vitamin E biosynthesis via CRISPR/Cas9-enabled genome editing. Annals of Botany, 126(5), 929–942. https://doi.org/10.1093/aob/mcaa115
Zhang, H., Zhang, Z., Zhao, Y., Guo, D., Zhao, X., Gao, W., Zhang, J., & Song, B. (2021). StWRKY13 promotes anthocyanin biosynthesis in potato (Solanum tuberosum) tubers. Functional Plant Biology : FPB, 49(1), 102–114. https://doi.org/10.1071/FP21109
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2022 Universidad Nacional de Ingeniería
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Todo el material publicado en la revista se comparte bajo la Licencia Creative Commons Attribution-NonCommercial-NoDerivatives 4.0., se permite la copia y redistribución del material en cualquier medio o formato siempre y cuando se de crédito de forma explícita a la revista, el autor y la obra, se distribuya de forma gratuita y sin hacer modificaciones al contenido.