Effect of climate change on the potential distribution of HLB in South America
DOI:
https://doi.org/10.5377/ribcc.v2i4.5925Keywords:
HLB, Climate Change, PCA, Phytosanitary riskAbstract
Huanglongbing (HLB) is the most destructive disease of citrus worldwide. In South America, it has been established in some states of Brazil. The aim of this study was to estimate effects of climate change on the potential geographical distribution of the disease. For this purpose a technique based on Principal Component Analysis was used. This technique predicts the environmental suitability of a species based on the Euclidean distance from any geographical point of South America to the places where HLB has been established in South America. To estimate potential changes in geographical distribution HLB in a scenario of climate change, the Representative Concentration Pathway 2.6 was considered, proposed by the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, through the model HadGEM2-ES by 2050 and 2070. Kappa statistic was calculated. QGIS 2.12, IDRISI Selva and Infostat were used. Areas with climate risk for the establishment of HLB, would be distributed in southern Brazil, southeastern Paraguay, northeastern and eastern part of the northwest region of Argentina and south central of Bolivia. According to the estimations of the Fifth Assessment Report of the IPCC and considering the RCP 2.6, the effects of climate change could determine that areas of climate risk for the establishment of HLB would be displaced towards the southwest of the areas considered riskier nowadays.Downloads
1106
HTML (Español (España)) 0
Published
How to Cite
License
Copyright (c) 2016 Rev. iberoam. bioecon. cambio clim.
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Copyright © Rev. iberoam. bioecon. climate change (Graduate School and UNAN-León, School of Agricultural and Veterinary Sciences / Department of Agroecology / Center for Research in Bioeconomy and Climate Cahnge (CRByCC).