Mechanical properties and reaction products of sodium sulfate activated pumice-lime cements (2015)

Authors

  • Léster Javier Espinoza Pérez Universidad Nacional de Ingeniería. Facultad de Ingeniería Química, Departamento de Química
  • Carlos Ariel Mercado Siles Universidad Nacional de Ingeniería. Facultad de Ingeniería Química
  • Eliezer Moisés Arias García Universidad Nacional de Ingeniería. Facultad de Ingeniería Química

DOI:

https://doi.org/10.5377/elhigo.v10i2.10541

Keywords:

pumice, lime, alkaline activation, alternative cement

Abstract

The mechanical properties were evaluated and the reaction products of various pastes and mortars made from pumice (P) and slaked lime (C) in the presence of sodium sulfate (SS) as activator, exposed to different temperature levels during different time intervals were identified. Factors such as the pumice / slaked lime (P / C) ratio were evaluated, determining that as the amount of lime increased, the mechanical compressive strength (RMC) of the mortars also increased; the content of SS, determining that the RMC of the mortars decreased by increasing the content of SS from 6% to 8%; and the exposure times at various exposure temperatures, determining that by increasing the exposure times at high temperatures (90 ºC) the CMR of the mortars decreased due to water losses in the cementitious matrix. The optimal conditions that allow reaching the maximum RMC at 28 days of curing are: a mass ratio P / C of 60/40, a content by weight of 6% of SS for the cementitious mix and curing of 1 hour of exposure to 40 ° C. In addition, the presence of reaction products such as Hydrated Calcium Silicate (CSH), ettringite, portlandite and calcium carbonate was identified when analyzing the paste of the mixture with the best mechanical performance through Fourier transform infrared spectroscopy (FTIR). The bands at 3640 and 460 cm-1, corresponding to the vibrations from Ca (OH) 2 and SiO2, respectively, occurred from 1 to 28 days of curing of the optimal mix, which suggests that even after 28 days After curing, it is possible that the CMR will increase, as there is still material to react.

Downloads

Download data is not yet available.
Abstract
436
PDF (Español (España)) 448

Author Biography

Léster Javier Espinoza Pérez, Universidad Nacional de Ingeniería. Facultad de Ingeniería Química, Departamento de Química

Es Ingeniero Químico por la UNI de Nicaragua, Maestro-en Ciencias y Doctor-en Ciencias por el Cinvestav de México. Realizó su tesis de Ingeniería y Maestría en el área de cementos alternativos, publicando sus resultados en revistas científicas nacionales e internacionales tales como Nexo-UNI y Construction & Building Materials (I.F: 4.419, Q1). Su trabajo doctoral se centró en el desarrollo de recubrimientos cerámicos de circona mediante deposición química en fase vapor para su uso como barreras ambientales en reactores nucleares de sales fundidas, investigación llevada a cabo dentro del proyecto SAMOFAR, financiado por la Unión Europea bajo el contexto Horizonte 2020, publicando sus resultados en la revista Ceramics International (I.F: 3.830, Q1) en colaboración con el Oak Ridge National Laboratory de Estados Unidos y la Universidad Nacional Autónoma de México. Actualmente es Profesor Titular de la UNI, además se ha desempeñado como jefe del Departamento de Química de junio 2014-agosto 2016. También fue investigador del proyecto TAISHIN, financiado por la cooperación japonesa en Nicaragua.

References

Ali, M. B., Saidur, R., & Hossain, M. S. (2011). A review on emission analysis in cement industries. In Renewable and Sustainable Energy Reviews. https://doi.org/10.1016/j.rser.2011.02.014

Allahverdi, A., Mehrpour, K., & Najafikani, E. (2008). Investigating the possibility of utilizing pumice-type natural pozzonal in production of geopolymer cement. Ceramics - Silikaty.

Almalkawi, A. T., Hamadna, S., & Soroushian, P. (2017). One-part alkali activated cement based volcanic pumice. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.06.139

Escalante-Garcia, J. I., Espinoza-Perez, L. J., Gorokhovsky, A., & Gomez-Zamorano, L. Y. (2009). Coarse blast furnace slag as a cementitious material, comparative study as a partial replacement of Portland cement and as an alkali activated cement. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2009.02.002

Escalante-Garcia, J. I., Méndez-Nonell, J., Gorokhovsky, A., Fraire-Luna, P. E., Mancha-Molinar, H., & Mendoza-Suarez, G. (2002). Reactividad y propiedades mecánicas de escoria de alto horno activada por álcalis. Boletin de La Sociedad Espanola de Ceramica y Vidrio. https://doi.org/10.3989/cyv.2002.v41.i5.664

Escalante García, J. Ivan, Campos-Venegas, K., Gorokhovsky, A., & Fernández, A. (2006). Cementitious composites of pulverised fuel ash and blast furnace slag activated by sodium silicate: Effect of Na2O concentration and modulus. Advances in Applied Ceramics. https://doi.org/10.1179/174367606X120151

Escalante García, José Iván. (2002). Materiales alternativos al cemento Pórtland. Avance y Perspectiva.
Pour-Ghaz, M. (2013). Sustainable infrastructure materials: Challenges and opportunities. International Journal of Applied Ceramic Technology. https://doi.org/10.1111/ijac.12083

Shi, C., Krivenko, P. V, & Roy, D. (2006). Alkali-Activated Cements and Concretes. In Alkali-Activated Cements and Concretes. https://doi.org/10.4324/9780203390672
Turner, L. K., & Collins, F. G. (2013). Carbon dioxide equivalent (CO2-e) emissions: A comparison between geopolymer and OPC cement concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2013.01.023

Vázquez Moreno, T. (1976). Contribución al estudio de los reacciones de hidratación del cemento portland por espectroscopia infrarroja. Materiales de Construcción. https://doi.org/10.3989/mc.1976.v26.i163.1225

Published

2020-12-11

How to Cite

Espinoza Pérez, L. J., Mercado Siles, C. A., & Arias García, E. M. (2020). Mechanical properties and reaction products of sodium sulfate activated pumice-lime cements (2015). Revista Ciencia Y Tecnología El Higo, 10(2), 13–25. https://doi.org/10.5377/elhigo.v10i2.10541

Issue

Section

Scientific articles