Hydrogeological interactions between Tiscapa lagoon and Las Sierras aquifer: a stable isotope study
DOI:
https://doi.org/10.5377/recoso.v7i12.19654Keywords:
Groundwater; lagoons; stable isotopes; isotope enrichment; evaporationAbstract
The study of the behavior and mechanism of recharge-discharge in aquifers is crucial for the sustainable management of water resources, especially in urban areas such as Managua. The objective of the research was to trace the movement of water from the Tiscapa Lagoon to the Las Sierras aquifer using stable isotopes of Oxygen 18 (δ18O) and Deuterium (δ2H) as tracers. A total of 322 δ18O and δ2H results were analyzed in the study, in the matrices of precipitated water, groundwater, Laguna de Tiscapa and Lake Xolotlán, to investigate who exerts influence on the Las Sierras aquifer, specifically in the area between Lakes Tiscapa and Lake Xolotlán. The main findings were the classification of two types of groundwater; one located south of Laguna Tiscapa with an average of -7.10‰ of δ18O associated with direct recharge from precipitation and another located between Laguna de tiscapa and Lake Xolotlán with an average of -5.93‰ of δ18O, and shows a direct influence of the waters of Laguna de Tiscapa with -4.53‰ of δ18O. That is, the Influence of the Laguna to the Las Sierras aquifer occurs in the northern and northeastern areas, indicating a significant recharge process. While the waters of Lake Xolotlán do not influence the groundwater of the Las Sierras aquifer. These findings are fundamental for the planning and management of water resources, ensuring a sustainable and efficient use of the aquifer.
64
References
Araguás Araguás, L., Louvat, D., López Guzmán, A., y Castillo Hernández, E. (1992). Estudio de hidrológica isotopica de los acuíferos de Managua.
Barberena Moncada, J. A. (2019). Modelamiento del origen de las precipitaciones en la ciudad de Managua mediante simulaciones con HYSPLIT. Revista Científcia Agua y Conocimiento, 5(15–25), 14. https://revistas.unan.edu.ni/index.php/RevAgua/article/view/3756
Barberena Moncada, J. A., y Hurtado García, I. L. (2019). Proceso de acidificación de las precipitaciones de Managua. Revista Científica de FAREM-Estelí, 31, 72–80. https://doi.org/10.5377/farem.v0i31.8472
Barberena-Moncada, J., Hurtado-García, I., y Sirias-Silva, M. (2021). Aplicación de Isótopos estables e hidroquímica para la comprensión del sistema hidrológico en Laguna de Tiscapa. Revista Científica de FAREM-Estelí, 37, 35–53. https://doi.org/10.5377/farem.v0i37.11211
Batista, L. V., Gastmans, D., Sánchez-Murillo, R., Farinha, B. S., dos Santos, S. M. R., y Kiang, C. H. (2018). Groundwater and surface water connectivity within the recharge area of Guarani aquifer system during El Niño 2014–2016. Hydrological Processes, 32(16), 2483–2495. https://doi.org/10.1002/hyp.13211
Brauman, K. A. (2015). Hydrologic ecosystem services: linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water, 2, 345–358. https://doi.org/10.1002/WAT2.1081
Clark, I., y Fritz, P. (2003). Chapter 2: Tracing the hydrological cycle. In Environmental isotopes in hydrology (Vol. 43, Issue 5, pp. 35–74). https://doi.org/10.1029/99eo00169
Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702–1703. https://doi.org/10.1126/science.133.3465.1702
Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.3402/tellusa.v16i4.8993
Esquivel-Hernández, G., Sánchez-Murillo, R., Quesada-Román, A., Mosquera, G. M., Birkel, C., y Boll, J. (2018). Insight into the stable isotopic composition of glacial lakes in a tropical alpine ecosystem: Chirripó, Costa Rica. Hydrological Processes, 32(24), 3588–3603. https://doi.org/10.1002/hyp.13286
Freundt, A., Hartmann, A., Kutterolf, S., y Strauch, W. (2010). Volcaniclastic stratigraphy of the Tiscapa maar crater walls (Managua, Nicaragua): Implications for volcanic and seismic hazards and Holocene climate changes. International Journal of Earth Sciences, 99(6), 1453–1470. https://doi.org/10.1007/s00531-009-0469-6
Kebede, S., Travi, Y., y Rozanski, K. (2009). The δ18O and δ2H enrichment of Ethiopian lakes. Journal of Hydrology, 365(3–4), 173–182. https://doi.org/10.1016/j.jhydrol.2008.11.027
Kokusai kogyo Co. Ltd. (1993). Estudio sobre el proyecto de Abastecimiento de Agua en Managua. Informe principal. In JICA.
Landwehr, J. M., y Coplen, T. B. (2006). Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. International Conference on Isotopes in Environmental Studies, 132–135.
Lewandowski, J., Meinikmann, K., y Krause, S. (2020). Groundwater-Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12(296), 1–7. https://doi.org/10.3390/w12010296
Mook, W. G. (2001). Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IAEA, Vol. 1). UNESCO-IAEA.Morán, B. J., Boutt, D. F., y Munk, L. A. (2019). Stable and Radioisotope Systematics Reveal Fossil Water as Fundamental Characteristic of Arid Orogenic-Scale Groundwater Systems. Water Resources Research, 55(12), 11295–11315. https://doi.org/10.1029/2019WR026386
Plata Bedmar, A., Araguás Araguás, L., Juan Avilés García, J., y Peña Martínez, R. (2001). Relación entre el Lago de Managua (Nicaragua) y las aguas subterráneas de su entorno. Ingeniería Civil, 121, 127–138.
Rozanki, K., Castillo, E., Flores, Y., Urbina, A., Castro, M., y Dávila, R. (2001). Balance isotópico e hidrogeologico del Lago Xolotlan. Informe Principal.
Safeeq, M., y Fares, A. (2016). Emerging Issues in Groundwater Resources. In Emerging Issues in Groundwater Resources (A. Fares, pp. 289–326). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-32008-3
Sánchez-Murillo, R., Birkel, C., Welsh, K., Esquivel-Hernández, G., CorralesSalazar, J., Boll, J., Brooks, E., Roupsard, O., Sáenz-Rosales, O., Katchan, I., Arce-Mesén, R., Soulsby, C., y Araguás-Araguás, L. J. (2016). Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews, 131(September 2015), 250–261. https://doi.org/10.1016/j.quascirev.2015.08.028
Sánchez-Murillo, R., Esquivel-Hernández, G., Corrales-Salazar, J. L., CastroChacón, L., Durán-Quesada, A. M., Guerrero-Hernández, M., Delgado, V., Barberena, J., Montenegro-Rayo, K., Calderón, H., Chevez, C., Peña-Paz, T., García-Santos, S., Ortiz-Roque, P., Alvarado-Callejas, Y., Benegas, L., Hernández-Antonio, A., Matamoros-Ortega, M., Ortega, L., y Terzer-Wassmuth, S. (2020). Tracer hydrology of the data-scarce and heterogeneous Central American Isthmus. Hydrological Processes, 34(11), 2660–2675. https://doi.org/10.1002/hyp.13758
Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., y Aggarwal, P. K. (2013). Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrology and Earth System
Sciences, 17(11), 4713–4728. https://doi.org/10.5194/hess-17-4713-2013
Timsic, S., y Patterson, W. P. (2014). Spatial variability in stable isotope values of surface waters of Eastern Canada and New England. Journal of Hydrology, 511, 594–604. https://doi.org/10.1016/j.jhydrol.2014.02.017
Vystavna, Y., Harjung, A., Monteiro, L. R., Matiatos, I., y Wassenaar, L. I. (2021). Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-021-27569-x
Wu, H., Huang, Q., Fu, C., Song, F., Liu, J., y Li, J. (2020). Stable isotope signatures of river and lake water from Poyang Lake, China: Implications for river–lake interactions. Journal of Hydrology, 125619, 1–10. https://doi.org/10.1016/j.jhydrol.2020.125619