Hydrogeological interactions between Tiscapa lagoon and Las Sierras aquifer: a stable isotope study

Authors

DOI:

https://doi.org/10.5377/recoso.v7i12.19654

Keywords:

Groundwater; lagoons; stable isotopes; isotope enrichment; evaporation

Abstract

The study of the behavior and mechanism of recharge-discharge in aquifers is crucial for the sustainable management of water resources, especially in urban areas such as Managua. The objective of the research was to trace the movement of water from the Tiscapa Lagoon to  the Las Sierras aquifer using stable isotopes of Oxygen 18 (δ18O) and Deuterium (δ2H) as tracers. A total of 322 δ18O and δ2H results were analyzed in the study, in the matrices of precipitated water, groundwater, Laguna de Tiscapa and Lake Xolotlán, to investigate who exerts influence on the Las Sierras aquifer, specifically in the area between Lakes Tiscapa and Lake Xolotlán. The main findings were the classification of two types of groundwater; one located south of Laguna Tiscapa with an average of -7.10‰ of δ18O associated with direct recharge from precipitation and another located between Laguna de tiscapa and Lake Xolotlán with an average of -5.93‰ of δ18O, and shows a direct influence of the waters of Laguna de Tiscapa with -4.53‰ of δ18O. That is, the Influence of the Laguna to the Las Sierras aquifer occurs in the northern and northeastern areas, indicating a significant recharge process. While the waters of Lake Xolotlán do not influence the groundwater of the Las Sierras aquifer. These findings are fundamental for the planning and management of water resources, ensuring a sustainable and efficient use of the aquifer.

Abstract
64
PDF (Español (España)) 14

References

Araguás Araguás, L., Louvat, D., López Guzmán, A., y Castillo Hernández, E. (1992). Estudio de hidrológica isotopica de los acuíferos de Managua.

Barberena Moncada, J. A. (2019). Modelamiento del origen de las precipitaciones en la ciudad de Managua mediante simulaciones con HYSPLIT. Revista Científcia Agua y Conocimiento, 5(15–25), 14. https://revistas.unan.edu.ni/index.php/RevAgua/article/view/3756

Barberena Moncada, J. A., y Hurtado García, I. L. (2019). Proceso de acidificación de las precipitaciones de Managua. Revista Científica de FAREM-Estelí, 31, 72–80. https://doi.org/10.5377/farem.v0i31.8472

Barberena-Moncada, J., Hurtado-García, I., y Sirias-Silva, M. (2021). Aplicación de Isótopos estables e hidroquímica para la comprensión del sistema hidrológico en Laguna de Tiscapa. Revista Científica de FAREM-Estelí, 37, 35–53. https://doi.org/10.5377/farem.v0i37.11211

Batista, L. V., Gastmans, D., Sánchez-Murillo, R., Farinha, B. S., dos Santos, S. M. R., y Kiang, C. H. (2018). Groundwater and surface water connectivity within the recharge area of Guarani aquifer system during El Niño 2014–2016. Hydrological Processes, 32(16), 2483–2495. https://doi.org/10.1002/hyp.13211

Brauman, K. A. (2015). Hydrologic ecosystem services: linking ecohydrologic processes to human well-being in water research and watershed management. WIREs Water, 2, 345–358. https://doi.org/10.1002/WAT2.1081

Clark, I., y Fritz, P. (2003). Chapter 2: Tracing the hydrological cycle. In Environmental isotopes in hydrology (Vol. 43, Issue 5, pp. 35–74). https://doi.org/10.1029/99eo00169

Craig, H. (1961). Isotopic Variations in Meteoric Waters. Science, 133(3465), 1702–1703. https://doi.org/10.1126/science.133.3465.1702

Dansgaard, W. (1964). Stable isotopes in precipitation. Tellus, 16(4), 436–468. https://doi.org/10.3402/tellusa.v16i4.8993

Esquivel-Hernández, G., Sánchez-Murillo, R., Quesada-Román, A., Mosquera, G. M., Birkel, C., y Boll, J. (2018). Insight into the stable isotopic composition of glacial lakes in a tropical alpine ecosystem: Chirripó, Costa Rica. Hydrological Processes, 32(24), 3588–3603. https://doi.org/10.1002/hyp.13286

Freundt, A., Hartmann, A., Kutterolf, S., y Strauch, W. (2010). Volcaniclastic stratigraphy of the Tiscapa maar crater walls (Managua, Nicaragua): Implications for volcanic and seismic hazards and Holocene climate changes. International Journal of Earth Sciences, 99(6), 1453–1470. https://doi.org/10.1007/s00531-009-0469-6

Kebede, S., Travi, Y., y Rozanski, K. (2009). The δ18O and δ2H enrichment of Ethiopian lakes. Journal of Hydrology, 365(3–4), 173–182. https://doi.org/10.1016/j.jhydrol.2008.11.027

Kokusai kogyo Co. Ltd. (1993). Estudio sobre el proyecto de Abastecimiento de Agua en Managua. Informe principal. In JICA.

Landwehr, J. M., y Coplen, T. B. (2006). Line-conditioned excess: a new method for characterizing stable hydrogen and oxygen isotope ratios in hydrologic systems. International Conference on Isotopes in Environmental Studies, 132–135.

Lewandowski, J., Meinikmann, K., y Krause, S. (2020). Groundwater-Surface Water Interactions: Recent Advances and Interdisciplinary Challenges. Water, 12(296), 1–7. https://doi.org/10.3390/w12010296

Mook, W. G. (2001). Environmental Isotopes in the Hydrological Cycle. Principles and Applications (IAEA, Vol. 1). UNESCO-IAEA.Morán, B. J., Boutt, D. F., y Munk, L. A. (2019). Stable and Radioisotope Systematics Reveal Fossil Water as Fundamental Characteristic of Arid Orogenic-Scale Groundwater Systems. Water Resources Research, 55(12), 11295–11315. https://doi.org/10.1029/2019WR026386

Plata Bedmar, A., Araguás Araguás, L., Juan Avilés García, J., y Peña Martínez, R. (2001). Relación entre el Lago de Managua (Nicaragua) y las aguas subterráneas de su entorno. Ingeniería Civil, 121, 127–138.

Rozanki, K., Castillo, E., Flores, Y., Urbina, A., Castro, M., y Dávila, R. (2001). Balance isotópico e hidrogeologico del Lago Xolotlan. Informe Principal.

Safeeq, M., y Fares, A. (2016). Emerging Issues in Groundwater Resources. In Emerging Issues in Groundwater Resources (A. Fares, pp. 289–326). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-319-32008-3

Sánchez-Murillo, R., Birkel, C., Welsh, K., Esquivel-Hernández, G., CorralesSalazar, J., Boll, J., Brooks, E., Roupsard, O., Sáenz-Rosales, O., Katchan, I., Arce-Mesén, R., Soulsby, C., y Araguás-Araguás, L. J. (2016). Key drivers controlling stable isotope variations in daily precipitation of Costa Rica: Caribbean Sea versus Eastern Pacific Ocean moisture sources. Quaternary Science Reviews, 131(September 2015), 250–261. https://doi.org/10.1016/j.quascirev.2015.08.028

Sánchez-Murillo, R., Esquivel-Hernández, G., Corrales-Salazar, J. L., CastroChacón, L., Durán-Quesada, A. M., Guerrero-Hernández, M., Delgado, V., Barberena, J., Montenegro-Rayo, K., Calderón, H., Chevez, C., Peña-Paz, T., García-Santos, S., Ortiz-Roque, P., Alvarado-Callejas, Y., Benegas, L., Hernández-Antonio, A., Matamoros-Ortega, M., Ortega, L., y Terzer-Wassmuth, S. (2020). Tracer hydrology of the data-scarce and heterogeneous Central American Isthmus. Hydrological Processes, 34(11), 2660–2675. https://doi.org/10.1002/hyp.13758

Terzer, S., Wassenaar, L. I., Araguás-Araguás, L. J., y Aggarwal, P. K. (2013). Global isoscapes for δ18O and δ2H in precipitation: Improved prediction using regionalized climatic regression models. Hydrology and Earth System

Sciences, 17(11), 4713–4728. https://doi.org/10.5194/hess-17-4713-2013

Timsic, S., y Patterson, W. P. (2014). Spatial variability in stable isotope values of surface waters of Eastern Canada and New England. Journal of Hydrology, 511, 594–604. https://doi.org/10.1016/j.jhydrol.2014.02.017

Vystavna, Y., Harjung, A., Monteiro, L. R., Matiatos, I., y Wassenaar, L. I. (2021). Stable isotopes in global lakes integrate catchment and climatic controls on evaporation. Nature Communications, 12(1), 1–7. https://doi.org/10.1038/s41467-021-27569-x

Wu, H., Huang, Q., Fu, C., Song, F., Liu, J., y Li, J. (2020). Stable isotope signatures of river and lake water from Poyang Lake, China: Implications for river–lake interactions. Journal of Hydrology, 125619, 1–10. https://doi.org/10.1016/j.jhydrol.2020.125619

Published

2024-12-15

How to Cite

Zeas Vivas, J. J., Barberena Moncada, J., & Hurtado García, I. (2024). Hydrogeological interactions between Tiscapa lagoon and Las Sierras aquifer: a stable isotope study. Revista Compromiso Social, 7(12), 159–173. https://doi.org/10.5377/recoso.v7i12.19654

Issue

Section

Artículos. Ciencias Básicas y Tecnología

Similar Articles

1 2 3 4 > >> 

You may also start an advanced similarity search for this article.