Revisión Sistemática Exploratoria: Tecnologías Ecológicas en la Construcción para Edificios Energéticamente Eficientes y Sostenibles

Autores/as

DOI:

https://doi.org/10.5377/arquitectura.v10i19.20561

Palabras clave:

Construcción, desarrollo-sustentable, ecología, eficiencia-energética, tecnologías-verdes

Resumen

El artículo presenta un mapeo de la literatura científica sobre tecnologías verdes aplicadas en la construcción entre 2014 y 2024. El objetivo es identificar tecnologías efectivas que tengan el potencial para proporcionar una mejor eficiencia energética y ser más sostenibles. A través de una revisión sistemática exploratoria se seleccionaron 60 artículos de bases de datos como Elsevier, Springer y IEEE. Los resultados destacan tecnologías como paredes verdes, diseño pasivo, IoT, sistemas fotovoltaicos, aerogeneradores, IA y técnicas de impresión 3D. Se concluye que el poder de estas tecnologías a la hora de ahorrar energía y reducir las emisiones de CO2 para convertirse así en más sostenible. Y ahí radica la importancia de las políticas del Gobierno y la colaboración intersectorial para potenciar el uso de estas tecnologías y cumplir con los objetivos de desarrollo sostenible. Un trabajo de investigación que supone una hoja de ruta seria para futuras prácticas y estudios en materia de construcción sostenible. 

Descargas

Los datos de descargas todavía no están disponibles.
Resumen
877
pdf 279

Biografía del autor/a

Eugenia Lyli Moreira-Macías, Universidad Internacional SEK (Ecuador), Quito, Ecuador

Magíster en Seguridad y Salud Ocupacional y Arquitecta con más de 15 años de experiencia profesional. Magíster de la Maestría en Arquitectura de la Universidad San Gregorio de Portoviejo (USGP) con Mención de Honor por Mejor Graduada. Magíster de la Maestría en Educación con mención en Gestión y Liderazgo de la Pontificia Universidad Católica del Ecuador (PUCE). Obtuvo un Diplomado en Gestión Prospectiva de Riesgo y Desastres por la USGP. Cuenta con certificaciones como Auditor Interno de Sistemas de Gestión Integrados en las normas ISO 9001:2015, ISO 14001:2015 e ISO 45001:2018, avaladas por la Universidad Internacional del Ecuador, y en Competencias en Prevención de Riesgos Laborales & Formador de Formadores. Desde 2017-abril 2025, estuvo acreditada como Perito Avaluador de Bienes Inmuebles por el Consejo de la Judicatura. Sus áreas de especialización incluyen seguridad y salud ocupacional, gestión de riesgos y arquitectura sostenible.

Walter David Cobeña-Loor, Universidad San Gregorio de Portoviejo, Portoviejo, Ecuador

Arquitecto por la Universidad Laica Eloy Alfaro de Manabí – ULEAM y Magíster en Docencia e Investigación Educativa por la Universidad Técnica de Manabí -UTM. Actualmente, realiza su tesis doctoral en arquitectura en la Universidad Nacional de Rosario (Argentina). Walter ha sido profesor e investigador en el departamento de Arquitectura de la Universidad San Gregorio de Portoviejo desde el año 2000, donde también es coordinador de la Maestría en Arquitectura, con especialización en Proyectos y Urbanismo. Es miembro del Colegio de Arquitectos del Ecuador. Su línea de investigación se centra en el confort térmico en interiores, el diseño arquitectónico sostenible, el uso de materiales locales como el bambú en viviendas urbanas y la eficiencia energética de dichos materiales. Ha participado activamente en congresos, capítulos de libros y revistas científicas donde expone sus ideas sobre el hábitat urbano sostenible para ciudades intermedias. 

David Alejandro Cobeña-Macías, Universidad San Gregorio de Portoviejo, Portoviejo, Ecuador

Arquitecto por la Universidad San Gregorio de Portoviejo-USGP, Magíster de la Maestría en Arquitectura de la Universidad San Gregorio de Portoviejo (USGP). 

Nicole Stefania Bermello-Moreira, Universidad San Gregorio de Portoviejo, Portoviejo, Ecuador

Arquitecta por la Universidad San Gregorio de Portoviejo-USGP, Magíster de la Maestría en Arquitectura de la Universidad San Gregorio de Portoviejo (USGP). 

Natalia Paola Ríos-Mera, Universidad Técnica de Manabí, Portoviejo, Ecuador

Arquitecta por la Universidad San Gregorio de Portoviejo-USGP. Máster en Ingeniería Civil mención Vivienda Social por la Universidad Técnica de Manabí - UTM. Analista de Infraestructura Física de la Universidad Técnica de Manabí - UTM. Docente de la Carrera de Arquitectura de la Universidad Técnica de Manabí - UTM. 

Citas

Abioye, S. O., Oyedele, L. O., Akanbi, L., Ajayi, A., Delgado, J. M. D., Bilal, M., ... & Ahmed, A. (2021). Artificial intelligence in the construction industry: A review of present status, opportunities and future challenges. Journal of Building Engineering, 44, 103299. https://doi.org/10.1016/j.jobe.2021.103299

Ahmad, M. W., Mourshed, M., Mundow, D., Sisinni, M., & Rezgui, Y. (2016). Building energy metering and environmental monitoring–A state-of-the-art review and directions for future research. Energy and Buildings, 120, 85-102. https://doi.org/10.1016/j.enbuild.2016.03.059

Akeiber, H., Nejat, P., Majid, M. Z. A., Wahid, M. A., Jomehzadeh, F., Famileh, I. Z., ... & Zaki, S. A. (2016). A review on phase change material (PCM) for sustainable passive cooling in building envelopes. Renewable and Sustainable Energy Reviews, 60, 1470-1497.

Allacker, K., Castellani, V., Baldinelli, G., Bianchi, F., Baldassarri, C., & Sala, S. (2019). Energy simulation and LCA for macro-scale analysis of eco-innovations in the housing stock. The International Journal of Life Cycle Assessment, 24, 989-1008. https://link.springer.com/article/10.1007/s11367-018-1548-3

Arshad, R., Zahoor, S., Shah, M. A., Wahid, A., & Yu, H. (2017). Green IoT: An investigation on energy saving practices for 2020 and beyond. Ieee Access, 5, 15667-15681. https://ieeexplore.ieee.org/abstract/document/7997698

Azkorra, Z., Pérez, G., Coma, J., Cabeza, L. F., Burés, S., Álvaro, J. E., ... & Urrestarazu, M. (2015). Evaluation of green walls as a passive acoustic insulation system for buildings. Applied acoustics, 89, 46-56. https://doi.org/10.1016/j.apacoust.2014.09.010

Baduge, S. K., Thilakarathna, S., Perera, J. S., Arashpour, M., Sharafi, P., Teodosio, B., ... & Mendis, P. (2022). Artificial intelligence and smart vision for building and construction 4.0: Machine and deep learning methods and applications. Automation in Construction, 141, 104440. https://doi.org/10.1016/j.autcon.2022.104440

Beccali, M., Strazzeri, V., Germanà, M. L., Melluso, V., & Galatioto, A. (2018). Vernacular and bioclimatic architecture and indoor thermal comfort implications in hot-humid climates: An overview. Renewable and Sustainable Energy Reviews, 82, 1726-1736. https://doi.org/10.1016/j.rser.2017.06.062

Bello, S. A., Oyedele, L. O., Akinade, O. O., Bilal, M., Delgado, J. M. D., Akanbi, L. A., ... & Owolabi, H. A. (2021). Cloud computing in construction industry: Use cases, benefits and challenges. Automation in Construction, 122, 103441. https://doi.org/10.1016/j.autcon.2020.10344 1

Bhati, A., Hansen, M., & Chan, C. M. (2017). Energy conservation through smart homes in a smart city: A lesson for Singapore households. Energy Policy, 104, 230-239. https://doi.org/10.1016/j.enpol.2017.01.032

Chel, A., & Kaushik, G. (2018). Renewable energy technologies for sustainable development of energy efficient building. Alexandria engineering journal, 57(2), 655-669. https://doi.org/10.1016/j.aej.2017.02.027

Conforme-Zambrano, G. D. C., & Castro-Mero, J. L. (2020). Arquitectura bioclimática. Polo del conocimiento, 5(3), 751-779. http://polodelconocimiento.com/ojs/index.php/es/article/view/1381

D’Agostino, D. (2015). Assessment of the progress towards the establishment of definitions of Nearly Zero Energy Buildings (nZEBs) in European Member States. J. Build. Eng, 1, 20-32. https://web.fe.up.pt/~nguerreiro/artigos/avaliacao_progresso_nzeb.pdf

Economidou, M., Todeschi, V., Bertoldi, P., D'Agostino, D., Zangheri, P., & Castellazzi, L. (2020). Review of 50 years of EU energy efficiency policies for buildings. Energy and buildings, 225, 110322. https://doi.org/10.1016/j.enbuild.2020.110322

Esposito, D., & Antonietti, M. (2015). Redefining biorefinery: the search for unconventional building blocks for materials. Chemical Society Reviews, 44(16), 5821-5835. https://pubs.rsc.org/en/content/articlehtml/2015/cs/c4cs00368c

Fawzy, S., Osman, A. I., Doran, J., & Rooney, D. W. (2020). Strategies for mitigation of climate change: a review. Environmental Chemistry Letters, 18, 2069-2094. https://link.springer.com/article/10.1007/s10311-020-01059-w

Foster, G. (2020). Circular economy strategies for adaptive reuse of cultural heritage buildings to reduce environmental impacts. Resources, Conservation and Recycling, 152, 104507. https://doi.org/10.1016/j.resconrec.2019.104507

Gaviria, J. A., Valencia, V., Olaya, Y., & Aramburo, S. A. (2018). Construcción sostenible. Editores científicos, 47.

González-Torres, M., Pérez-Lombard, L., Coronel, J. F., Maestre, I. R., & Yan, D. (2022). A review on buildings energy information: Trends, end-uses, fuels and drivers. Energy Reports, 8, 626-637. https://doi.org/10.1016/j.egyr.2021.11.280

Ghaffar, S. H., Corker, J., & Fan, M. (2018). Additive manufacturing technology and its implementation in construction as an eco-innovative solution. Automation in construction, 93, 1-11. https://doi.org/10.1016/j.autcon.2018.05.005

Ghaffar, S. H., Burman, M., & Braimah, N. (2020). Pathways to circular construction: An integrated management of construction and demolition waste for resource recovery. Journal of cleaner production, 244, 118710. https://doi.org/10.1016/j.jclepro.2019.118710

Habert, G., & Ouellet-Plamondon, C. (2016). Recent update on the environmental impact of geopolymers, RILEM Tech. Lett. 1 (2016) 17. https://doi.org/10.21809/rilemtechlett.2016.6

Hager, I., Golonka, A., & Putanowicz, R. (2016). 3D printing of buildings and building components as the future of sustainable construction?. Procedia Engineering, 151, 292-299. https://doi.org/10.1016/j.proeng.2016.07.357

Hernández-Zamora, M. F., Jiménez-Martinez, S., & Sánchez-Monge, J. I. (2021). Materiales alternativos como oportunidad de reducción de impactos ambientales en el sector construcción. Revista Tecnología en Marcha, 34(2), 3-10. http://dx.doi.org/10.18845/tm.v34i2.4831

Hertwich, E. G., Ali, S., Ciacci, L., Fishman, T., Heeren, N., Masanet, E., ... & Wolfram, P. (2019). Material efficiency strategies to reducing greenhouse gas emissions associated with buildings, vehicles, and electronics—a review. Environmental Research Letters, 14(4), 043004. https://iopscience.iop.org/article/10.1088/1748-9326/ab0fe3

Hesselink, L. X., & Chappin, E. J. (2019). Adoption of energy efficient technologies by households–Barriers, policies and agent-based modelling studies. Renewable and Sustainable Energy Reviews, 99, 29-41. https://doi.org/10.1016/j.rser.2018.09.031

Himeur, Y., Ghanem, K., Alsalemi, A., Bensaali, F., & Amira, A. (2021). Artificial intelligence based anomaly detection of energy consumption in buildings: A review, current trends and new perspectives. Applied Energy, 287, 116601. https://doi.org/10.1016/j.apenergy.2021.116601

Iavicoli, I., Leso, V., Ricciardi, W., Hodson, L. L., & Hoover, M. D. (2014). Opportunities and challenges of nanotechnology in the green economy. Environmental health, 13, 1-11. https://link.springer.com/article/10.1186/1476-069X-13-78

Jouhara, H., Żabnieńska-Góra, A., Khordehgah, N., Ahmad, D., & Lipinski, T. (2020). Latent thermal energy storage technologies and applications: A review. International Journal of Thermofluids, 5, 100039. https://doi.org/10.1016/j.ijft.2020.100039

Kaewunruen, S., Rungskunroch, P., & Welsh, J. (2018). A digital-twin evaluation of net zero energy building for existing buildings. Sustainability, 11(1), 159. https://doi.org/10.3390/su11010159

Kern, F., Kivimaa, P., & Martiskainen, M. (2017). Policy packaging or policy patching? The development of complex energy efficiency policy mixes. Energy research & social science, 23, 11-25. https://doi.org/10.1016/j.erss.2016.11.002

Khajavi, S. H., Motlagh, N. H., Jaribion, A., Werner, L. C., & Holmström, J. (2019). Digital twin: vision, benefits, boundaries, and creation for buildings. IEEE access, 7, 147406-147419. https://ieeexplore.ieee.org/abstract/document/8863491

Kumar, A., Sah, B., Singh, A. R., Deng, Y., He, X., Kumar, P., & Bansal, R. C. (2017). A review of multi criteria decision making (MCDM) towards sustainable renewable energy development. Renewable and sustainable energy reviews, 69, 596-609. https://doi.org/10.1016/j.rser.2016.11.191

Maasoumy, M., Razmara, M., Shahbakhti, M., & Vincentelli, A. S. (2014). Handling model uncertainty in model predictive control for energy efficient buildings. Energy and Buildings, 77, 377-392. https://doi.org/10.1016/j.enbuild.2014.03.057

Manchado Garabito, R., Tamames Gómez, S., López González, M., Mohedano Macías, L., & Veiga de Cabo, J. (2009). Revisiones sistemáticas exploratorias. Medicina y seguridad del trabajo, 55(216), 12-19. https://scielo.isciii.es/scielo.php?pid=S0465-546X2009000300002&script=sci_arttext&tlng=en

Martiskainen, M. (2017). The role of community leadership in the development of grassroots innovations. Environmental Innovation and Societal Transitions, 22, 78-89. https://doi.org/10.1016/j.eist.2016.05.002

Mayer, M. J., Szilágyi, A., & Gróf, G. (2020). Environmental and economic multi-objective optimization of a household level hybrid renewable energy system by genetic algorithm. Applied Energy, 269, 115058. https://doi.org/10.1016/j.apenergy.2020.115058

Mushtaha, E., Salameh, T., Kharrufa, S., Mori, T., Aldawoud, A., Hamad, R., & Nemer, T. (2021). The impact of passive design strategies on cooling loads of buildings in temperate climate. Case Studies in Thermal Engineering, 28, 101588. https://doi.org/10.1016/j.csite.2021.101588

Nižetić, S., Šolić, P., Gonzalez-De, D. L. D. I., & Patrono, L. (2020). Internet of Things (IoT): Opportunities, issues and challenges towards a smart and sustainable future. Journal of cleaner production, 274, 122877. https://doi.org/10.1016/j.jclepro.2020.122877

Liu, Z., Zhou, Q., Tian, Z., He, B. J., & Jin, G. (2019). A comprehensive analysis on definitions, development, and policies of nearly zero energy buildings in China. Renewable and Sustainable Energy Reviews, 114, 109314. https://doi.org/10.1016/j.rser.2019.109314

Loonen, R. C., Favoino, F., Hensen, J. L., & Overend, M. (2017). Review of current status, requirements and opportunities for building performance simulation of adaptive facades. Journal of Building Performance Simulation, 10(2), 205-223. https://doi.org/10.1080/19401493.2016.1152303

López, F. J., Lerones, P. M., Llamas, J., Gómez-García-Bermejo, J., & Zalama, E. (2018). A review of heritage building information modeling (H-BIM). Multimodal Technologies and Interaction, 2(2), 21. https://doi.org/10.3390/mti2020021

Lucon, O., Ürge-Vorsatz, D., Ahmed, A. Z., Akbari, H., Bertoldi, P., Cabeza, L. F., ... & Vilariño, M. V. (2014). Buildings. https://pure.iiasa.ac.at/id/eprint/11117/

Raabe, D., Tasan, C. C., & Olivetti, E. A. (2019). Strategies for improving the sustainability of structural metals. Nature, 575(7781), 64-74. https://www.nature.com/articles/s41586-019-1702-5

Radić, M., Brković Dodig, M., & Auer, T. (2019). Green facades and living walls—a review establishing the classification of construction types and mapping the benefits. Sustainability, 11(17), 4579. https://doi.org/10.3390/su11174579

Ragheb, G., El-Shimy, H., & Ragheb, A. (2015). Green architecture: A concept of sustainability Soc. Behavioral Sciences (Basel, Switzerland), 2, 324-333. https://doi.org/10.1016/j.sbspro.2015.12.075

Ramage, M. H., Burridge, H., Busse-Wicher, M., Fereday, G., Reynolds, T., Shah, D. U., ... & Scherman, O. (2017). The wood from the trees: The use of timber in construction. Renewable and Sustainable Energy Reviews, 68, 333-359. https://doi.org/10.1016/j.rser.2016.09.107

Ramos Ruiz, G., & Fernández Bandera, C. (2017). Validation of calibrated energy models: Common errors. Energies, 10(10), 1587. https://doi.org/10.3390/en10101587

Rogge, K. S., Kern, F., & Howlett, M. (2017). Conceptual and empirical advances in analysing policy mixes for energy transitions. Energy Research & Social Science, 33, 1-10. https://doi.org/10.1016/j.erss.2017.09.025

Sakin, M., & Kiroglu, Y. C. (2017). 3D Printing of Buildings: Construction of the Sustainable Houses of the Future by BIM. Energy Procedia, 134, 702-711. https://doi.org/10.1016/j.egypro.2017.09.562

Scrivener, K. L. (2014). Options for the future of cement. Indian Concr. J, 88(7), 11-21. https://www.giatecscientific.com/wp-content/uploads/2018/05/0851_ICJ_Article.pdf

Seghier, T. E., Lim, Y. W., Ahmad, M. H., & Samuel, W. O. (2017). Building envelope thermal performance assessment using visual programming and BIM, based on ETTV requirement of Green Mark and GreenRE. International journal of built environment and sustainability, 4(3). https://ijbes.utm.my/index.php/ijbes/article/view/216

Seghier, T. E., Ahmad, M. H., & Lim, Y. W. (2019). Automation of concrete usage index (CUI) assessment using computational BIM. International Journal of Built Environment and Sustainability, 6(1), 23-30. https://core.ac.uk/download/pdf/287744161.pdf

Serale, G., Fiorentini, M., Capozzoli, A., Bernardini, D., & Bemporad, A. (2018). Model predictive control (MPC) for enhancing building and HVAC system energy efficiency: Problem formulation, applications and opportunities. Energies, 11(3), 631. https://doi.org/10.3390/en11030631

Sergeev, V. V., Petrichenko, M. R., Nemova, D., Kotov, E. V., Tarasova, D. S., Nefedova, A. V., & Borodinecs, A. (2018). The building extension with energy efficiency light-weight building walls. Magazine of Civil Engineering, (8 (84)), 67-74. https://cyberleninka.ru/article/n/the-building-extension-with-energy-efficiency-light-weight-building-walls

Seyedzadeh, S., Rahimian, F. P., Glesk, I., & Roper, M. (2018). Machine learning for estimation of building energy consumption and performance: a review. Visualization in Engineering, 6, 1-20. https://link.springer.com/article/10.1186/s40327-018-0064-7

Shcherbak, V. G., Ganushchak-Yefimenko, L., Nifatova, O., Dudko, P., Savchuk, N., & Solonenchuk, I. (2019). Application of international energy efficiency standards for energy auditing in a University buildings. Global Journal of Environmental Science and Management, 5(4), 501-514. https://doi.org/10.22034/GJESM.2019.04.09

Shahrubudin, N., Lee, T. C., & Ramlan, R. J. P. M. (2019). An overview on 3D printing technology: Technological, materials, and applications. Procedia Manufacturing, 35, 1286-1296. https://doi.org/10.1016/j.promfg.2019.06.089

Shan, S., Genç, S. Y., Kamran, H. W., & Dinca, G. (2021). Role of green technology innovation and renewable energy in carbon neutrality: A sustainable investigation from Turkey. Journal of Environmental Management, 294, 113004. https://doi.org/10.1016/j.jenvman.2021.113004

Sovacool, B. K., & Del Rio, D. D. F. (2020). Smart home technologies in Europe: A critical review of concepts, benefits, risks and policies. Renewable and sustainable energy reviews, 120, 109663. https://doi.org/10.1016/j.rser.2019.109663

Taleb, H. M. (2014). Using passive cooling strategies to improve thermal performance and reduce energy consumption of residential buildings in UAE buildings. Frontiers of architectural research, 3(2), 154-165. https://doi.org/10.1016/j.foar.2014.01.002

Tian, J., Yu, L., Xue, R., Zhuang, S., & Shan, Y. (2022). Global low-carbon energy transition in the post-COVID-19 era. Applied energy, 307, 118205. https://doi.org/10.1016/j.apenergy.2021.118205

Ullah, I., Ahmad, R., & Kim, D. (2018). A prediction mechanism of energy consumption in residential buildings using hidden markov model. Energies, 11(2), 358. https://doi.org/10.3390/en11020358

Ürge-Vorsatz, D., Cabeza, L. F., Serrano, S., Barreneche, C., & Petrichenko, K. (2015). Heating and cooling energy trends and drivers in buildings. Renewable and Sustainable Energy Reviews, 41, 85-98. https://doi.org/10.1016/j.rser.2014.08.039

Yang, L., Qian, F., Song, D. X., & Zheng, K. J. (2016). Research on urban heat-island effect. Procedia engineering, 169, 11-18. https://doi.org/10.1016/j.proeng.2016.10.002

Yigitcanlar, T., Desouza, K. C., Butler, L., & Roozkhosh, F. (2020). Contributions and risks of artificial intelligence (AI) in building smarter cities: Insights from a systematic review of the literature. Energies, 13(6), 1473. https://doi.org/10.3390/en13061473

Descargas

Publicado

2025-06-26

Cómo citar

Moreira-Macías, E. L., Cobeña-Loor, W. D., Cobeña-Macías, D. A., Bermello-Moreira, N. S., & Ríos-Mera, N. P. (2025). Revisión Sistemática Exploratoria: Tecnologías Ecológicas en la Construcción para Edificios Energéticamente Eficientes y Sostenibles. Revista Arquitectura +, 10(19), 143–159. https://doi.org/10.5377/arquitectura.v10i19.20561

Número

Sección

Artículo de Revisión

Artículos similares

1 2 3 4 5 6 7 8 9 > >> 

También puede Iniciar una búsqueda de similitud avanzada para este artículo.