Formulation based on Trichoderma sp. Strain FRACIII, evaluation of conidial viability and concentration

Authors

DOI:

https://doi.org/10.5377/elhigo.v15i1.20499

Keywords:

Conidial viability, biopesticide formulations, antagonistic fungi, biological inputs

Abstract

The use of antagonistic fungi as an alternative to agrochemicals for pest control is a key strategy for sustainable agriculture. In this study, the viability and conidial concentration of Trichoderma sp. strain FRAIII were evaluated in wettable powder formulations using different inert materials. Diatomaceous earth, wheat flour, and calcium silicate were used, with rice serving as the control. Viability and conidial concentration were highest in the formulations with diatomaceous earth, followed by wheat flour and calcium silicate. In contrast, viability in the rice-based formulation decreased by 20.87% between each evaluation. The results suggest that diatomaceous earth is a suitable carrier material for maintaining the stability of Trichoderma sp., potentially enhancing the effectiveness of biopesticides in agricultural systems.

Downloads

Download data is not yet available.
Abstract
396
PDF (Español (España)) 122

References

Alcantara, Y. M. L. (2019). Producción y formulación de Trichoderma aspperellum para el manejo de patógenos de la raíz de caña de azúcar (Tesis de maestria). Universidad Autónoma del Estado de Morelos. http://riaa.uaem.mx/xmlui/handle/20.500.12055/646

Amaro-Leal, J.L., Romero-Arenas, O., Rivera A., Huerta, L.M., Reyes, E. (2016). Effect of the Formulation of Seaweed (Porphyra umbilical R.) in Biopreparations based on Trichoderma harzianum Rifai. Journal of Pure & Applied Microbiology. https://microbiologyjournal.org/effect-of-the-formulation-of-seaweed-porphyra-umbilical-r-in-biopreparations-based-on-trichoderma-harzianumem-rifai/

Arora, S., y Sahni, D. (2016). Pesticides affect soil microbial ecology and enzyme activity-An overview. Journal of Applied and Natural Science, 8(2), 1126 - 1132. https://pdfs.semanticscholar.org/2eb8/2810eeecc72ec50195c7f6a46ad397431080.pdf

Bae, S. J., Mohanta, T. K., Chung, J. Y., Ryu, M., Park, G., Shim, S., Mehta, S., & Bae, H. (2016). Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control, 92, 128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005

Bettiol, W., Morandi, M. A., Corrêa, E. B., Pinto, Z. V., de Paula Júnior, T. J., Zambolim, L., & Costa, J. C. (2014). Produtos alternativos. In Bettiol, W., Morandi, M.A. (Eds.), Biocontrole de doenças de plantas: uso perspectivas (pp. 75-96). Embrapa Meio Ambiente.

Bettiol, W.; Rivera, M.C.; Mondino, P.; Montealegre, J.R.; Colmenárez, y. 2014. Control biológico de enfermedades de plantas en Argentina. Control biológico de enfermedades de plantas en América Latina y el Caribe. DOI:10.13140/2.1.2368.5922

Djurfeldt, G., Holmén, H., Jirstrom, M., y Larsson, R. (2005). The African food crisis: Lessons from the Asian green revolution. Wallingford: CABI Publishing. https://www.cabidigitallibrary.org/doi/book/10.1079/9780851999982.0000

Espinosa Ruíz, G. y Vallejos Treminio, F. L. (2016). Desarrollo de formulaciones bioplaguicidas a base de Bauveria bassiana (Bals & Vuils) con materiales sólidos y líquidos (Tesis de grado), Universidad Nacional Agraria.

https://repositorio.una.edu.ni/id/eprint/3387

France, A; Urtubia, HI. (2007). Formulaciones de hongos entomopatógenos para control de plagas en agricultura. INIA Tierra adentro.46-49. https://biblioteca.inia.cl/server/api/core/bitstreams/b4c27b9f-c425-45c2-bb64-362b7c2fb163/content

French, E. Y Hebert T. Métodos de investigación fitopatológica. San Jose, Costa Rica. IICA 154-158 pp. https://books.google.com.ni/books?id=etdbQtSPTh8C&printsec=frontcover&hl=es&source=gbs_ge_summary_r&cad=0#v=onepage&q&f=false

Garbeva, P. V., Van Veen, J. A., & Van Elsas, J. D. (2004). Microbial diversity in soil: selection of microbial populations by plant and soil type and implications for disease suppressiveness. Annu. Rev. Phytopathol., 42(1), 243-270. https://doi.org/10.1146/annurev.phyto.42.012604.135455

Harman, G. E., Howell, C. R., Viterbo, A., Chet, I., & Lorito, M. (2004). Trichoderma species: opportunistic, avirulent plant symbionts. Nature Reviews Microbiology, 2(1), 43-56. https://www.nature.com/articles/nrmicro797

Helgason, T., Daniell, T. J., Husband, R., Fitter, A. H., & Young, J. P. W. (1998). Ploughing up the wood-wide web? Nature, 394(6692), 431-431. https://www.nature.com/articles/28764

Herrera, W., Valbuena, O., & Pavone-Maniscalco, D. (2020). Formulation of Trichoderma asperellum TV190 for biological control of Rhizoctonia solani on corn seedlings. Egyptian Journal of Biological Pest Control, 30, 1-8. https://ejbpc.springeropen.com/articles/10.1186/s41938-020-00246-9

Howell, C. R. (2003). Mechanisms employed by Trichoderma species in the biological control of plant diseases: the history and evolution of current concepts. Plant disease, 87(1), 4-10. 10.1094/PDIS.2003.87.1.4

Leucona, R. 1996. Microorganismos patógenos empleados en el control microbiano de insectos plagas. Técnicas empleadas con hongos entomopatógenos. Ed. Leucona, R. Pra edición. Buenos Aires. AR. 338 p.

Losic, D., & Korunic, Z. (2018). Diatomaceous Earth, A Natural Insecticide for Stored Grain Protection: Recent Progress and Perspectives, 219-247. Diatom Nanotechnology: Progress and Emerging Applications (Ed. D. Losic). RSC Publishing, Cambridge, UK. https://doi.org/10.1039/9781788010160-00219

Masunaka, A., Hyakumachi, M., y Takenaka, S. (2011). Plant growth-promoting fungus, Trichoderma koningi suppresses isoflavonoid phytoalexin vestitol production for xolonization on/in the eoots of Lotus japonicus. Microbes and Environments, 26(2), 128-134. 10.1264/jsme2.me10176

Monteiro VN, do Nascimento Silva R, Steindorff AS, Costa FT, Noronha EF, Ricart CA, de Sousa MV, Vainstein MH, Ulhoa CJ. New insights in Trichoderma harzianum antagonism of fungal plant pathogens by secreted protein analysis. Curr Microbiol. 2010 Oct;61(4):298-305. doi: 10.1007/s00284-010-9611-8. Epub 2010 Mar 7. PMID: 20213103.

Monzón, C. (2001). Producción y uso de hongos Entomopatógenos. Programa CATIE/MIP-AF, Managua (Nicaragua) Universidad Nacional Agraria, Managua (Nicaragua). Facultad de Agronomía. Departamento de Protección Agrícola y Forestal Fundación para el Desarrollo Tecnológico, Agropecuario y Forestal de Nicaragua, Managua (Nicaragua).

Naeimi, S., Khosravi, V., Varga, A., V´ agvolgyi, ¨ C., Kredics, L., 2020. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10, 1–15. https://doi.org/10.3390/agronomy10091258.

Ortiz-Catón, M., Alatorre-Rosas, R., Valdivia-Bernal, R., Ortiz-Catón, A., Medina-Torres, R., & Alejo-Santiago, G. (2011). Efecto de la temperatura y humedad relativa sobre el desarrollo de los hongos entomopatógenos. Revista bio ciencias. Enero 2011; No 2. Universidad Autónoma de Nayarit. Ciudad de México. 42-53 pp. https://doi.org/10.15741/revbio.01.02.05

Pathak, V. M., Verma, V. K., Rawat, B. S., Kaur, B., Babu, N., Sharma, A., Dewali, S., Yadav, M., Kumari, R., Singh, S., Mohapatra, A., Pandey, V., Rana, N., & Cunill, J. M. (2022). Current status of pesticide effects on environment, human health and it’s eco-friendly management as bioremediation: A comprehensive review. In Frontiers in Microbiology (13). https://doi.org/10.3389/fmicb.2022.962619

Shoresh, M., Harman, G. E., & Mastouri, F. (2010). Induced systemic resistance and plant responses to fungal biocontrol agents. Annual review of phytopathology, 48, 21-43. https://pubmed.ncbi.nlm.nih.gov/20192757/

Viera, W., Noboa, M., Bermeo, J., Báez, F., & Jackson, T. (2018). Quality parametres of four types of formulations based on Trichoderma aspperellum and Purpuricillium lilacinum. Enfoque UTE, 9(4), 145-153.

Vinale, F., Sivasithamparam, K., Ghisalberti, E. L., Marra, R., Woo, S. L., & Lorito, M. (2008). Trichoderma plant pathogen interactions. Soil Biology and Biochemistry, 40(1), 1-10. https://doi.org/10.1016/j.soilbio.2007.07.002

Woo, S. L., Ruocco, M., Vinale, F., Manfredini, C., Sivasithamparam, K., & Lorito, M. (2014). Trichoderma based products and their widespread use in agriculture. The Open Mycology Journal, 8(1). https://benthamopen.com/contents/pdf/TOMYCJ/TOMYCJ-8-71.pdf

Yao, X., Guo, H., Zhang, K., Zhao, M., Ruan, J., & Chen, J. (2023). Trichoderma and its role in biological control of plant fungal and nematode disease. In Frontiers in Microbiology (14). Frontiers Media S.A. https://doi.org/10.3389/fmicb.2023.1160551

Zin, N. A., y Badaluddin, N. A. (2020). Biological functions of Trichoderma spp. for agriculture applications. In Annals of Agricultural Sciences, 65 (2), 168–178. Faculty of Agriculture, Ain-Shams University. https://doi.org/10.1016/j.aoas.2020.09.003

Zhou, W., Li, M., & Achal, V. (2024). A comprehensive review on environmental and human health impacts of chemical pesticide usage. In Emerging Contaminants, 11 (1). KeAi Communications Co. https://doi.org/10.1016/j.emcon.2024.100410

Published

2025-06-26

How to Cite

Rodríguez Zamora , M., Chávez López , F. A., Romero, S. D., Martinuz, A., & Moran Centeno, J. C. (2025). Formulation based on Trichoderma sp. Strain FRACIII, evaluation of conidial viability and concentration. Journal of Science and Technology El Higo, 15(1), 23–34. https://doi.org/10.5377/elhigo.v15i1.20499

Issue

Section

Scientific articles

Similar Articles

1 2 3 > >> 

You may also start an advanced similarity search for this article.